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1  | INTRODUC TION

Trait adaptation, specifically, the development of suites of mor-
phological, behavioral, physiological, and life history traits tied 
to environmental conditions at the time of reproduction can have 
far- reaching consequences at individual and population levels 
(Hendry & Day, 2005). There is strong selection for adults to breed 
at times and in locations that are conducive to the survival of off-
spring. Embryonic and larval developmental time varies as a func-
tion of environmental factors (e.g., temperature, stream discharge, 

etc., Gillooly et al., 2002; Jaworski & Kamler, 2002; Jay et al., 2020; 
O’Connor et al., 2007). Therefore, maternal effects, including fe-
male resource expenditures and provisioning of eggs conditional 
on environments experienced prior to and at the time and location 
of spawning can significantly influence offspring phenotypic traits 
(Mousseau & Fox, 1998), and can collectively contribute to embry-
onic and larval development (Einum & Fleming, 2000; Jaworski & 
Kamler, 2002) and dispersal (Edwards et al., 2007).

Maternal reproductive investments including egg size 
(Bernardo, 1996; Trippel & Neil, 2004), lipids (Einum & Fleming, 2000) 
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Summary
Nutritional deficiency associated with reduced thiamine (vitamin B1) and reduced 
natural reproduction of salmonid species in the Great Lake Region is well established. 
The negative relationship between egg thiamine and lipid concentration to post- hatch 
larval growth and survival in teleost species, coupled with the limited research of egg 
thiamine in Acipenseriform species of conservation concern, including lake sturgeon, 
indicates that study of thiamine concentrations lake sturgeon eggs is warranted. Eggs 
were collected from females (N = 12) during the early and late portion of the spawning 
run in 2007 in a wild population from Black Lake, MI. Concentrations of thiamine, lipid 
and fatty acid concentration were measured along with female biological information 
(body size and egg size) and characteristics of larvae at hatch. Significant differences 
in egg thiamine concentrations were observed between early-  and late- spawning fe-
males (mean ± SD: 2.36 nmol·g−1 ± 1.09 vs. 0.73 ± 0.25 nmol·g−1, W = 0.05, p < .01). 
No significant relationships were observed between female body size or egg size and 
egg lipid or thiamine concentration. Differences in lipid and thiamine concentrations 
were not predictive of larval body size or yolk sac volume at hatch. Total and phos-
phorylated thiamine were correlated with n- 3 polyunsaturated fatty acids, suggest-
ing that dietary items were likely partially responsible for provisioning of essential 
compounds. Given the negative effects of low egg thiamine concentration on larval 
survival in other fish species globally, results indicate that further research in areas of 
nutrient acquisition and thiamine effects on larval survival, natural recruitment, and 
hatchery feeding strategies is warranted for lake sturgeon.
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and essential vitamins (e.g., thiamine, Fisher et al., 1998; Fitzsimons 
et al., 2007) are largely dictated by the physiological condition of 
females during gametogenesis (McCormick, 1998). Few studies have 
addressed questions regarding variation in maternal provisioning of 
eggs related to the timing of spawning. Specifically, understanding 
of how the timing of reproduction affects individual ovary quality 
and reproductive success is limited (Lowerre- Barbieri et al., 2011).

Maternal effects associated with the provisioning of eggs with 
essential nutrients can significantly affect offspring growth and 
survival during early ontogenetic stages (Berkeley et al., 2004; 
Einum & Fleming, 2000; Fuiman & Ojanguren, 2011; Green, 2008; 
Tocher, 2003). Thiamine (vitamin B1) plays important physiological 
roles in fishes and is essential for enzymes involved in carbohydrate 
metabolism (Amcoff et al., 1998). The implications of thiamine defi-
ciency, commonly referred to as thiamine deficiency complex (TDC, 
review in Harder et al., 2018) are well established (Brown et al., 2005; 
Fitzsimons & Brown, 1999). In Acipenseriforms, increases in thiamine 
concentration are associated with increased larval weight and length 
(Ghiasi et al., 2017). Additionally, thiamine deficient Sterlet sturgeon 
(Acipenser ruthenus) demonstrated disease symptoms including yolk- 
sac deformation, loss of equilibrium and erratic swimming behavior 
(Ghiasi et al., 2017). Fishes that are susceptible to thiamine defi-
ciency obtain thiamine from dietary items from lower trophic levels. 
Thiamine injections increase free thiamine, thiamine pyrophosphate 
and total thiamine in sturgeon broodstock (Ghiasi et al., 2014). There 
is evidence of microbial gut synthesis in fish, but its availability to the 
host fish is not known (Ji et al., 1998; Kraft & Angert, 2017).

Fatty acids, particularly polyunsaturated fatty acids (PUFAs) are 
important building blocks during egg and embryonic development 
(Ahmadi et al., 2011). In many fish, synthesis of PUFAs varies tempo-
rally (Madenjian et al., 2000; McKinley et al., 1993). A reduction in 
hatch success (Leray et al., 1985; Watanabe et al., 1984), egg quan-
tity, size (Leray et al., 1985; Moodie et al., 1989), and larval survival 
(Czesny et al., 1999; Moodie et al., 1989) have all been reported in 
fishes with a reduced concentration of n- 3 high unsaturated fatty 
acids (HUFA) during embryonic and larval development. In lake trout 
(Salvelinus namaycush), cis- 7- hexadecenoic acid in both neutral lipids 
(NL) and polar lipids (PL) was correlated with pre- hatch mortality, as 
was docosapentaenoic acid in PL and docosahexaenoic acid in NL 
(Czesny et al., 2009). Further, total lipids, like thiamine pyrophos-
phate, were correlated with the frequency of early mortality syn-
drome in lake trout (Czesny et al., 2009, 2012). Fatty acid transfer 
to the egg during vitellogenesis is associated with female nutritional 
status (Frémont et al., 1984; Navas et al., 1998), suggesting that vari-
ability in HUFA’s and other PUFAs during vitellogenesis, may have 
lasting fitness consequences. This is particularly evident during em-
bryogenesis, ontogenesis, and in the critical period immediately fol-
lowing hatch (Bruce et al., 1999), influencing reproductive success, 
and ultimately recruitment.

Lake sturgeon (Acipenser fulvescens) are a long- lived, iter-
oparous, lithophilic spawning species (Bruch et al., 2016; Peterson 
et al., 2007), that is characterized by delayed sexual maturity and 
prolonged inter- spawning intervals (Forsythe, et al., 2012). Natural 

recruitment remains low (Holey et al., 2000) and has been attributed 
to depensatory effects of low spawner abundance (Dammerman 
et al., 2019), but also potentially to female provisioning of eggs 
(Wassink et al., 2019, 2020). Knowledge of physiological processes 
and characteristics of eggs and associations with essential nutri-
ents, environmental conditions experienced during embryogenesis, 
survival during embryogenesis, and early post- hatch periods would 
greatly aid efforts to predict population- wide natural recruitment 
and to direct supplementation programs. Information is lacking re-
garding maternal effects in lake sturgeon associated with egg provi-
sioning, and the utilization of essential nutrient reserves deposited 
in yolks such as lipids and antioxidant vitamins in relation to envi-
ronmental regimes associated with the timing of reproduction. In 
situations when spawning may occur over a protracted period, as 
has been characterized in this sturgeon population from Black Lake, 
MI (Forsythe, Crossman, et al., 2012), variation in levels of female 
provisioning can be considerable (Wassink et al., 2020).

Our objectives were to quantify lipid and thiamine concentra-
tions in eggs of female lake sturgeon, determine whether these nu-
trient and vitamin concentrations varied as a function of the timing of 
spawning, female body size or egg size, and whether concentrations 
were associated with larval phenotype and yolk sac area at hatch.

2  | MATERIAL S AND METHODS

2.1 | Study location

The research was conducted on a well- studied population from 
the upper Black River, a shallow and wadable fourth- order stream 
and primary tributary of Black Lake, MI (Dammerman et al., 2016; 
Wassink et al., 2019). The population is closed to immigration and 
dams restrict movement to just Black Lake (~4,000 ha) and the upper 
Black River (UBR). Each year, groups of adults enter the UBR and 
arrive at spawning areas several km up- stream from the lake over a 
period of 28– 43 days (Forsythe, Crossman, et al., 2012; Forsythe, 
Scribner, et al., 2012), typically in 2 or more groups that generally 
correspond to “early” and “late” (Crossman et al., 2011; Dammerman 
et al., 2019; Duong et al., 2011; Forsythe, Crossman, et al., 2012; 
Forsythe, Scribner, et al., 2012) times in the spawning period (see 
Forsythe, Crossman, et al., 2012, figure 2 for characterizations of 
the 2007 chronology of spawning). These two periods are charac-
terized by different temperature and flow regimes, with tempera-
tures cooler and flows higher during earlier spawning periods. Most 
spawning adults can be captured using long- handed dip nets over 
~2 km of stream each year during migration in the river or while in the 
act of spawning (Duong et al., 2011; Forsythe, Scribner, et al., 2012).

2.2 | Field sampling

Unfertilized eggs were collected from females (N = 12) in the act 
of spawning over the period from 26 April to 11 May 2007 using 
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methods described in Crossman et al. (2011). Eggs were placed into 
sealed plastic ziplock bags in the field and retained for less than 12 hr 
in coolers containing stream water maintained at ambient stream 
temperatures while in the field. Following sampling, eggs were frozen 
in the field with dry ice, transported to the laboratory, photographed 
and measured, and stored at −80℃ until analyses were performed 
(Ghiasi et al., 2014, 2017). Females were categorized into early and 
late spawning groups based on long- term capture- recapture data on 
date of spawning and stream temperature (Dammerman et al., 2019; 
Duong et al., 2011; Forsythe, Crossman, et al., 2012) and interval be-
tween spawning episodes (Figure 1). Each individual was measured 
for total length (cm), fork length (cm), weight (kg), and girth (cm) at 
the time of capture.

2.3 | Laboratory analyses

2.3.1 | Characterization of egg and larval traits

Estimates of mean egg size (diameter in mm) were measured from 
30 randomly selected eggs per female prior to freezing at −80℃. 
Randomly selected eggs were collected from the totality of eggs 
that could be extracted from a female lake sturgeon during an ac-
tive spawning attempt (150– 300 ml of eggs per female at 52 eggs 
ml−1, Michigan State University, unpublished data). Estimates of total 
length (mm), body area (mm2), and yolk sac area (YSA, mm2) were 
averaged from 30 randomly selected larvae from each female at 

hatch (Bauman et al., 2015, 2016). Randomly selected eggs fertilized 
to measure larval characteristics were collected from the totality of 
eggs that could be extracted from a female lake sturgeon during an 
active spawning attempt. Measurements of eggs and larval traits 
were made using a 6.0 megapixal digital camera and a mm ruler to 
scale the photo for Image J analysis software (Version 1.34, free-
ware) as described by Crossman et al. (2014).

2.3.2 | Thiamine, lipid, and fatty acid analysis

High performance liquid chromatography (HPLC) analysis was 
used for free thiamine and its phosphated derivatives (mono-  and 
di- phosphate) (Brown et al., 1998) in the sturgeon eggs. The HPLC 
system consisted of a delivery system pump (110B, Beckman 
Instruments Inc.) equipped with an FP- 920 intelligent fluorescence 
detector (JASCO Co.). The thiamine- HCL, thiamine- monophosphate, 
and thiamine diphosphate were identified and quantified using ex-
ternal standards supplied from Sigma- Aldrich.

For thiamine analysis, Waters Spherisorb® 5 μm NH2 
(4.6 × 250 mm) column coupled with a NH2 packed guard column 
was used on set at 375 nm for excitation and 430 nm for emission 
slightly modified from Brown et al. (1998). Briefly, 600 μl of 2% TCA 
extraction solution was added to tissue samples and gently homog-
enized for 30 s. The homogenized samples were placed into a boiling 
water bath for five min and then cooled on ice for 10 min. After cool-
ing, the samples were supplemented by 600 μl of ice- cold 10% TCA 

F I G U R E  1   Temporal distribution of “early” and “late” spawning male and female lake sturgeon (see Forsythe, Crossman, et al., 2012) 
arriving in the upper Black River during the 2007 spawning season. The number of females from which eggs were collected on a given day is 
noted above each day
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solution. Then, the samples were centrifuged at 14,000g for 15 min 
at 4℃. The clear supernatants (1 ml) were transferred into glass test 
tubes (10 ml capacity). To remove TCA and lipids, the sample extracts 
in the test tubes were washed with 4 volumes of ethyl acetate- 
hexane solution (v/v, 3/2). The washed sample (0.5 ml) was oxidized 
to thiochrome by adding 25 μl of 30 mM K3Fe(CN)6 and 25 μl of 0.8 M 
NaOH. Then, the oxidized sample extracts were vortexed and filtered 
before injection into HPLC system. The mobile phase consisted of 
KH2PO4 (pH 7.5, 85 mM) with acetonitrile (v/v, 65/35).

2.3.3 | Lipid and fatty acids analysis

Total lipid (TL) of sturgeon eggs were extracted according to the 
method described by Folch et al. (1957). Extracted lipids were sepa-
rated into neutral (NL) and polar (PL) lipids using Sep- Pak silica car-
tridges, 690 mg, 55– 105 µm, (Waters). NL was extracted using 20 ml 
chloroform, and then PL was eluted using 20 ml methanol (Juaneda 
& Rocquelin, 1985). The lipid content and the proportion of each 
lipid class were measured gravimetrically.

Lipids were converted to fatty acid methyl esters (FAME) by 
the method of Metcalfe and Schmitz (1961). The internal standard 
nonadecanoic acid (C19:0, Nu- Check- Prep, Inc.) was added to the 
samples prior to transmethylation as reference standard for quan-
tification. FAME were analyzed with a gas chromatography (Varian 
3900 GC, Varian, Inc.) equipped with a flame ionization detector, a 
capillary column (WCOT fused silica 100 m × 0.25 mm coating CPSIL 
88 for FAME, df = 0.2) and an auto- injector (CP- 8410 Autoinjector, 
Varian, Inc.). Helium was used as a carrier gas at a flow rate of 30 ml 
min−1. The injector and detector temperatures were 270 and 300℃, 
respectively. The initial temperature of the oven was 175℃ for 
26 min, which increased to 205℃ by increments of 2℃ min−1, then 
held at 205℃ for 24 min. The individual fatty acid (FA) was identi-
fied by comparing to their retention times with a standard mix (Nu- 
Check- Prep, Inc.).

2.4 | Statistical analysis

Differences in female body size (fork length, FL) and egg size be-
tween females spawning during early and late periods (Dammerman 
et al., 2019; Duong et al., 2011; Forsythe, Crossman, et al., 2012; 
Forsythe, Scribner, et al., 2012) were quantified using Wilcoxon- 
Mann- Whitney tests (WMW, Siegel & Castellan, 1988). Relationships 
between female body size and egg lipids and thiamine concentra-
tion were investigated using regression analysis. Differences in 
thiamine and lipid concentration in eggs of early and late spawning 
females were also conducted using a Wilcoxon– Mann– Whitney test. 
Analyses of relationships between egg thiamine and lipid concentra-
tion and larval phenotypic traits were conducted using regression 
analysis. Relationships between standardized spawning day and 
female body size, egg size, thiamine concentration, lipid concentra-
tion, and larval phenotypic traits were included to demonstrate that 

grouping of fish by spawning run was consistent with evaluating 
variables across the 2007 spawning run in totality. All assumptions of 
normality were tested using Shapiro- Wilk tests. Total thiamine, thia-
mine monophosphate, thiamine pyrophosphate and free thiamine 
concentrations required log transformation (Figure S5a– d) to achieve 
normality. Analyses were conducted in R (4.0.2, www.r- proje ct.org).

3  | RESULTS

Adults (N = 208) were collected during the 2007 spawning period, 
which extended from 24 April through 1 June. We collected eggs 
from 12 of 64 females captured (18.8%) including seven females dur-
ing the early spawning period (April 26– 29) and five females spawn-
ing later in the season (May 10– 12). Water temperatures during the 
period of collection of eggs from early and late spawning female 
were 11– 14 and 15– 18℃, respectively.

No significant difference (mean ± SD) in female body size (FL, 
153.7 ± 12.7 cm vs. 160.4 ± 8.8 cm; W = 12.5, p = .46) was observed 
between individuals from early and late spawning groups. Mean ± SD 
egg size did not differ significantly between early and late spawning 
females (3.8 ± 0.23 vs. 3.6 ± 0.24; W = 27, p = .15). Egg size was not 
significantly associated with standardized day of capture (R2 = .14, 
F = 1.62, df1,10, p = .23, Figure S1a). Female body size was not sig-
nificantly associated with egg lipid concentration (F = 0.28, df1,10, 
p = .61) or concentrations of egg thiamine (F = 0.03, df1,10, p = .85) 
(Table 1). At the time of hatch, larvae from early and late females did 
not differ significantly in total length (mean ± SD: 12.29 ± 0.42 mm 
vs. 11.31 ± 1.10 mm, W = 27, p = .14), but larval size at hatch did de-
crease as a function of standardized day of capture (R2 = .42, F = 7.19, 
df1,10, p = .02, Figure S1b). An increase of one unit of standardized 
day of capture decreased total length at hatch by 3.56 mm. Larvae 
from early and late females did not differ in body area (mean ± SD: 
19.25 ± 1.80 vs. 17.77 ± 2.32 mm2; W = 25, p = .25), nor was larval 
body area significantly associated with standardized day of capture 
(R2 = .12, F = 1.39, df1,10, p = .27, Figure S1c). Larvae from early and 
late females did not differ in yolk- sac area (mean ± SD: 9.95 ± 0.65 
vs. 9.35 ± 1.20 mm2; W = 25, p = .25) (Table 1), nor was larval yolk- 
sac area significantly associated with standardized day of capture 
(R2 = .12, F = 1.37, df1,10, p = .27, Figure S1d).

Concentration of total, neutral, and polar lipids (Table S1) were 
moderately but not significantly higher in eggs from early relative 
to late spawning females (Table 1). Total lipids did not differ sig-
nificantly between eggs collected from females collected during 
different spawning periods (mean ± SD, early: 11.91% ± 3.33% of 
wet weight, late: 11.32% ± 4.87% of wet weight, W = 20, p = .76) 
(Table 1). Total lipids was not associated with standardized day of 
capture (R2 = .02, F = 0.249, df1,10, p = .86, Figure S2a). Neither 
neutral lipids (mean ± SD; early: 10.20% ± 1.37% of wet weight, 
late: 7.54% ± 4.02% of wet weight, W = 28, p = .11) nor polar lipids 
(mean ± SD; early: 2.91% ± 0.53% of wet weight, late: 2.12% ± 1.21% 
of wet weight, W = 28, p = .11) differed significantly from eggs 
collected from females spawning in different spawning periods 

http://www.r-project.org
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(Table 1). Additionally, neither neutral lipids (R2 = .10, F = 1.15, df1,10, 
p = .31, Figure S2b), nor polar lipids (R2 = .10, F = 1.07, df1,10, p = .33, 
Figure S2c) were associated with standardized day of capture.

Total thiamine was significantly higher for eggs that were col-
lected from females during the early spawning run (mean ± SD: 
2.36 nmol·g−1 ± 1.09 vs. 0.73 ± 0.25 nmol·g−1, W = 0.05, p < .01). 
Log total thiamine decreased as a function of standardized capture 
day during the spawning season (R2 = .33, F = 11.1, df1,22, p < .01, 
Figure S3a). An increase of 1 unit of standardized spawning day de-
creased total thiamine by 3.5 nmol·g−1. Thiamine monophosphate 
(TMP) was slightly but significantly higher in eggs collected from fe-
males in the early spawning run (mean ± SD: early: 0.16 ± 0.08 nmo-
l·g−1, late: 0.07 ± 0.03 nmol·g−1, respectively; W = 31, p = .03). Log 
TMP decreased as a function of standardized capture day during the 
spawning season (R2 = .35, F = 11.7, df1,22, p < .01, Figure S3b). An 
increase of 1 unit of standardized spawning day decreased TMP by 
3.0 nmol·g−1. Additionally, Thiamine pyrophosphate (TPP) was sig-
nificantly higher in early spawning run eggs (mean ± SD: 2.14 ± 1.00 
vs. 0.57 ± 0.31 nmol·g−1, respectively; W = 31, p < .01). Log TPP de-
creased as a function of standardized capture day during the spawn-
ing season (R2 = .33, F = 11, df1,22, p < .01, Figure S3c). An increase 
of 1 unit of standardized spawning day decreased TPP by 4.3 nmo-
l·g−1. Free thiamine did not differ between eggs collected during 
the early (mean ± SD: 0.05 ± 0.04 nmol·g−1) and late (mean ± SD: 
0.069 ± 0.11 nmol·g−1) spawning runs (W = 13, p = .53) (Table 1). Log 
free thiamine was not significantly associated with standardized day 
of capture (R2 = .11, F = 0.249, df1,22, p = .62, Figure S3d).

Polyunsaturated fatty acids (n- 3; neutral lipid) were strongly as-
sociated with the concentration of total thiamine in lake sturgeon 
eggs (R2 = .65, F = 18.86, df1,10, p < .01; Figure S4a). Additionally, 
both TMP (R2 = .76, F = 32.32, df1,10, p < .01, Figure S4b) and TPP 

(R2 = .63, F = 16.84, df1,10, p < .01, Figure S4c) were strongly as-
sociated with the content of n- 3 PUFAs in lake sturgeon eggs. 
Conversely, free thiamine (R2 = .01, F = 0.02, df1,10, p = .90, Figure 
S4d) was not associated with neutral lipids.

ω- 3 PUFAs (polar lipid) were associated with the concentration 
of total thiamine (R2 = .46, F = 8.16, df1,10, p = .01, Figure S5a), and 
TPP (R2 = .44, F = 7.75, df1,10, p = .02, Figure S5c) in lake sturgeon 
eggs. Additionally, TMP (R2 = .61, F = 15.62, df1,10, p < .01, Figure 
S5b) was strongly associated with the content of ω- 3 PUFAs in lake 
sturgeon eggs. Again, free thiamine (R2 < .01, F < 0.01, df1,10, p = .98, 
Figure S5d) was not associated with polar lipids.

4  | DISCUSSION

Factors related to fatty acid and vitamin provisioning of eggs were 
investigated in early-  and late- spawning groups of lake sturgeon. 
Thiamine concentrations were significantly higher in females 
spawning early in the season relative to later spawning females. 
Thiamine concentration of the late spawning females were below 
the critical concentration associated with early mortality syndrome 
(EMS) in Great Lakes salmonids (1.0 nmol g−1 total thiamine, Fisher 
et al., 1995; Fisher et al., 1996; Hill & Nellbring, 1999), though a 
critical threshold for egg thiamine in sturgeon has not been estab-
lished. Differences in lipid and thiamine concentrations were not 
related to female body size or egg size, though egg size was slightly 
lower in early- spawning females compared to late- spawning fe-
males. Lipid concentration (T- MP and T- PP) in sturgeon eggs were 
moderately but not significantly lower in females spawning late in 
the run relative to eggs collected from females spawning earlier in 
the spawning season (Table 1).

Trait

Spawning time
MannU (p- value, 
10 df)Early (N = 7) Late (N = 5)

Egg characteristics

Total lipds (nmol g−1) 11.91 (3.33) 11.32 (4.87) W = 20 (0.76)

Neutral lipids (nmol g−1) 10.20 (1.37) 7.54 (4.02) W = 28, (0.11)

Polar lipds (nmol g−1) 2.91 (0.53) 2.12 (1.21) W = 28, (0.11)

Total thiamine (nmol g−1) 2.36 (1.09) 0.73 (0.25) W = 0.05 (<0.01)*

Free thiamine (nmol g−1) 0.05 (0.04) 0.09 (0.11) W = 13 (0.53)

Thiamine monophosphate (nmol g−1) 0.16 (0.08) 0.07 (0.03) W = 31 (0.03)*

Thiamine pyrophosphate (nmol g−1) 2.14 (1.00) 0.57 (0.31) W = 34 (<0.01)*

Characteristics of larvae at hatch

Total length (mm) 12.29 (0.42) 11.31 (1.10) W = 27 (0.14)

Body area (mm2) 19.25 (1.80) 17.77 (2.32) W = 25 (0.25)

Yolk sac area (mm2) 9.95 (0.65) 9.31 (1.20) W = 25 (0.25)

Adult female characteristics

Fork length (cm) 153.7 (12.7) 160.9 (8.8) W = 12.5 (0.46)

Egg size (diameter, mm) 3.9 (0.2) 3.7 (0.2) W = 27 (0.15)

*Denotes p- values less than .05.

TA B L E  1   Comparison of mean 
(standard deviation) female, egg, and 
larval traits for early and late spawning 
female lake sturgeon captured at 
spawning areas during April and May 
2007
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While only a small portion of females from each spawning group 
were sampled in this one study year, maternal effects associated with 
egg provisioning related to the timing of reproduction remains uncer-
tain and understudied for sturgeons. For some species, older, larger 
females spawn earlier (Wright & Trippel, 2009) and produce larger, 
higher quality eggs and larvae than smaller females (Esteve, 2005; 
Schreck et al., 2001). Data for lake sturgeon in the Black Lake popula-
tion show no evidence of similar relationships (see also Dammerman 
et al., 2020). Regardless, the repeatability of spawning times for 
individuals in the Black Lake population (Forsythe, Crossman, 
et al., 2012) suggests further studies into factors influencing early 
life stage survival and ultimately recruitment are warranted.

In fish, synthesis of PUFAs varies temporally (Bergström, 1989; 
McKinley et al., 1993; Schwalme et al., 1993). Vitamins and PUFAs 
directly affect reproduction and embryonic development by modu-
lating maturation (Sturmey et al. 2009, McKeegan & Sturmey, 2012). 
The ratios of n- 3 PUFAs on reproduction and embryo/progeny 
performance were addressed in fish as well as non- teleost verte-
brates (Abayasekara & Wathes, 1999). Different metabolic effi-
ciencies associated with differences in incubation temperature can 
have profound effects on developmental processes that in turn 
strongly effect larval traits at hatch and through critical early life- 
history stages. Physiological processes related to egg provisioning 
represents an important focus for further research. Importantly, 
metabolic elongation and desaturation of fatty acids is associated 
with differences in gametogenesis (Carboni et al., 2013; Dupont 
et al., 2014) and along with embryo incubation temperature, can 
have profound effects on developmental processes that in turn have 
been shown to effect larval traits at hatch and through critical early 
life- history stages in lake sturgeon (Dammerman et al., 2016).

Low concentrations of thiamine in eggs of lake sturgeon may be 
linked to diet which has been discussed as a major contributor to 
variation in egg quality in other Great Lakes fishes (Tillit et al., 2009). 
While dietary information specific to Black Lake lake sturgeon is not 
available, sturgeon are opportunistic bottom feeders that forage 
principally on invertebrates within lake substrate. A portion of the 
lake sturgeon diet includes dreissenid mussels, Dreissena bugensis 
and D. polymorpha (Karatayev et al., 2014) that have been shown 
to have high thiaminase activity (Tillit et al., 2009). Consumption of 
dreissenids, in conjunction with low thiamine content of lake stur-
geon eggs are separate lines of evidence which indicate that lake 
sturgeon may suffer from thiamine deficiency. Dietary effects may 
be important to lake sturgeon thiamine concentration but are not 
likely to completely reconcile egg thiamine concentration in females 
spawning two weeks apart. Food consumption during the 2- week 
period that separated the early and late spawning groups (late April 
vs. mid- May) is unlikely to affect thiamine provisioning of eggs that 
were fully developed and ovulated (Dettlaff et al., 1993).

Thiamine is an essential element required in biochemical reac-
tions of all organisms. Because free thiamine is scarce in natural en-
vironments, organisms have evolved various means of acquisition, in 
large part associated with dietary consumption (Bettendorff, 2007, 
review in Kraft & Angert, 2017). Microbes are widely believed to be 

involved with production (Fitzpatrick & Thore, 2014; Ji et al., 1998) 
or degradation by production of thiaminase including the bacte-
rial taxa implicated in other fish species: Clostridium sporogenes, 
Burkholderia pseudomallei, B. thailandensis, and Paenibacillus spp. 
(Kraft & Angert, 2017). Microbial communities in the sediment and in 
dietary items consumed by sturgeon are likely to be more abundant 
and taxonomically different during the later (warmer) period when 
late- spawning females are present (Abdul Razak et al., 2019; Bucci 
et al., 2014; Hullar et al., 2006). DNA metabarcoding (e.g., Abdul 
Razak et al., 2019) could be a profitable avenue of research along 
with quantitative PCR to ascertain changes in dietary microbial com-
munity composition and taxonomic abundance in directions consis-
tent with microbial taxa known to produce or degrade thiamine.

Larval body size (total length, body area, yolk sac area) at hatch 
was significantly greater in offspring from early spawning females 
compared to late spawning females (Table 1). Larval size in poikilo-
thermic vertebrates has been widely documented to vary as a func-
tion of rearing temperature (Atkinson, 1995) as observed in our data. 
However, larval size was not significantly associated with thiamine 
or lipid concentration in this study.

Lake sturgeon abundance and distribution in the Great Lakes 
has declined precipitously over the past decades (Bruch et al., 2016; 
Hay- Chmielewski & Whelan, 1997). Understanding the mechanisms 
associated with declines in abundance is an important research 
area for fisheries managers, and planning is underway to implement 
basin- wide restoration activities. Results on lipid and vitamin con-
centration in lake sturgeon represent the first evidence quantifying 
differences between different groups of lake sturgeon that spawn at 
different times in the reproductive season. These data also provide 
a preliminary evaluation of the importance of main effects and in-
teractions of these nutrients to larval traits at hatch. Perhaps most 
important, these data provide evidence of decreasing thiamine con-
centration across a spawning season, which may fill knowledge gaps 
in the current understanding of female egg provisioning in migratory 
fish species.

Preliminary data on thiamine- fatty acid interaction in lake stur-
geon suggest further research on vitamin and antioxidant interac-
tions is needed. Great Lakes scientists recommended intensification 
of the studies into natural reproduction and early life history of lake 
sturgeon (Holey et al., 2000). Given the negative effects of low egg 
thiamine concentration to salmonid (Czesny et al., 2009, 2012; Fisher 
et al., 1995, 1996; Hill & Nellbring, 1999) and percid larval survival 
(Rinchard et al., 2011), and given the findings of this study, further 
research is warranted for lake sturgeon hatcheries involved in stock-
ing programs. Additional field research could facilitate development 
of feed formulations that enhance egg, hatch, and larval quality and 
survival. Other work should specifically evaluate the post- hatch lar-
val survival of lake sturgeon for which egg thiamine approaches the 
critical level described in salmonids (1.0 nmol g−1, Fisher et al., 1995; 
Fisher et al., 1996; Hill & Nellbring, 1999). Black Lake was the system 
where the thiamine deficiency was first documented in lake stur-
geon and other Great Lakes tributaries even though there is no pres-
ent connectivity.
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