
The Bugs Framework (BF) – Your Best Friend?

Irena Bojanova
National Institute of Standards and Technology (NIST)

NIST SATE VI, September 19, 2019

https://samate.nist.gov/BF/

2

Know Your Weaknesses

⚫ They Know Your Weaknesses – Do You?

⚫ Knowing what makes your software systems vulnerable to attacks is critical,
→ as software vulnerabilities hurt:
 security

 reliability, and

 availability of the system as a whole

⚫ Software – should be free of known weaknesses (bugs)

3

Objective and Need

⚫ Objective: Develop a complete, orthogonal, attributes based classification
of software bugs that would improve dramatically on:

– the current CWE definitions (vocabulary) used for defining software weaknesses, and

– how vulnerability classes are described for modern software development.

⚫ Need:

✓ CWE is a repository of known (reported) weaknesses in the form of
a nomenclature (numbered items) that has overlaps and gaps in coverage.

✓ Current CWEs definitions are often inaccurate, imprecise or ambiguous,
which makes it difficult to measure, express, and explain
applicability of different software quality assurance techniques or approaches for software security.

✓ Other existing classifications and guides also have
their own problems related to coverage, accuracy and precision.

⚫ Gap: Software security issues are often described incorrectly, and defined inaccurately,

→ which tremendously impacts on how threats, attacks, patches, and exposures are communicated.

5

Resent External Presentations

⚫ Visibility + Seeking Collaboration → Presentations To:

NITRD SPSQ IWG – July 11, 2019:

→ NSF, NASA, BLS, NIST, NOAA, NRL

NITRD CSIA IWG – August 22, 2019:
→ DISA, DHS, NSF, NRC, DARPA, NRL, ONR,
OSD, DOE, DOD HPCMP, AFRL, NCO

6

Outline

1. The Bugs Framework (BF)

2. Existing Repositories of Bugs, Vulnerabilities, and Attacks

3. Problems with Current Bug Descriptions

4. Need for Structured, Precise, Orthogonal Approach

5. Developed BF Classes

7

The Bugs Framework (BF)

8

The Bugs Framework (BF)

The Bugs Framework (BF) is
a precise descriptive language for software bugs

→ allows to more accurately and precisely define
software bugs and/or vulnerabilities.

 Factoring and restructuring of information in CWEs, SFPs, and STs,
and classifications from NSA CAS, IDA SOAR, SEI-CERT, and more.

9

BF Taxonomy

BF is a set of bug classes. Each BF class:

⚫ Has an accurate and precise definition and

⚫ Comprises:

✓ Level (high or low) – identifies the fault as language-related or semantic.

✓ Attributes – identify the software fault.

✓ Causes – bring about the fault.

✓ Consequences – to which the fault could lead.

✓ Sites – locations in code where the fault might occur.

o Sites are identifiable mainly for low level classes

→ BF uses precise definitions and terminology.

⚫ BF is descriptive, not prescriptive.

✓ It explains what happens.

✓ There’s not enough detail to
usefully predict the result.

⚫ BF is language independent.

10

BF Class Graph

<<attribute>>:

✓ <<value>>

✓ <<value>>

✓ …

<<attribute>>:

✓ <<value>>

✓ <<value>>

✓ …

<<attribute>>:

✓ <<value>>

✓ <<value>>

✓ …

<<attribute>>:

✓ <<value>>

✓ <<value>>

✓ …

…

Causes ConsequencesAttributes

<<cause>>

<<consequence>>

…

<<consequence>>

ClassName (ABR): <<concise definition>>.

<<cause>>
<<sub-cause>>

<<sub-cause>> …

<<class>> <<class>>

<<cause>>

<<class>>

oAt least one attribute (underlined) identifies the software fault.

oCauses and consequences are directed graphs.

11

Quick Examples of BF Classes:

⚫Buffer Overflow (BOF)

⚫ Information Exposure (IEX)

12

⚫Buffer Overflow (BOF)

13

BF: Buffer Overflow (BOF)

⚫ Our Definition:

The software accesses through an array a memory location
that is outside the boundaries of that array.

→ Clearer than CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer: “The
software performs operations on a memory buffer, but it can read from or write to a memory location that is
outside of the intended boundary of the buffer.”

✓ clarifies that access is through the same buffer to which the intended boundary pertains.

✓ accurately, precisely, and concisely describes violation of memory safety.

Related CWEs, SFP and ST:

⚫ CWEs are 119, 120, 121, 122, 123, 124, 125, 126, 127, 786, 787, 788, 805, 806, 823.

⚫ SFP cluster is SFP8 Faulty Buffer Access under Primary Cluster: Memory Access.

⚫ ST is the Buffer Overflow Semantic Template.

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/806.html
https://cwe.mitre.org/data/definitions/823.html
http://faculty.ist.unomaha.edu/rgandhi/st/bufferoverflowtemplate.pdf

14

BOF: Causes, Attributes, and Consequences

15

CVE-2014-0160 (Heartbleed) description using BOF taxonomy:

BOF: Example – CVE-2014-0160 (Heartbleed)

Cause: Input Not Checked Properly leads to Data Exceeds Array (specifically, Too Much Data)
Attributes:

Access: Read
Boundary: Above
Location: Heap
Data Size: Huge
Excursion: Continuous

Consequence: IEX (if not had been cleared)

See: https://samate.nist.gov/BF/Examples/BOF.html

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://samate.nist.gov/BF/Examples/BOF.html

16

BF Descriptions of BOF Related CWEs
CWE BF Class

ID Name BOF

Cause(s)

BOF Attributes BOF

Consequences
Access Boundary Location Magnitude Data Size Excursion

119 Improper Restriction of Operations within the

Bounds of a Memory Buffer

Wrong Index/ Pointer Out of Range any any any any any any any

120 Buffer Copy without Checking Size of Input

('Classic Buffer Overflow')

Array Too Small Write Above any any any Continuous any

121 Stack-based Buffer Overflow any BOF cause Write any Stack any any any any

122 Heap-based Buffer Overflow any BOF cause Write any Heap any any any any

123 Write-what-where Condition any BOF cause Write any any any any Discrete any

124 Buffer Underwrite ('Buffer Underflow') Wrong Index/ Pointer Out of Range Write Below any any any any any

125 Out-of-bounds Read PAR leads to Pointer Out of Range Read any any any any any IEX

126 Buffer Over-read any BOF cause Read Above any any any any IEX

127 Buffer Under-read Wrong Index/ Pointer Out of Range Read Below any any any any IEX

786 Access of Memory Location Before

Start of Buffer

Wrong Index/ Pointer Out of Range any Below any any any any any

787 Out-of-bounds Write any BOF cause Write any any any any any any

788 Access of Memory Location After

End of Buffer

Wrong Index/ Pointer Out of Range any Above any any any any any

805 Buffer Access with Incorrect Length Value Data Exceeds Array any Above any any any Continuous any

806 Buffer Access Using Size of Source Buffer Too Much Data (source size used) any any any any any Continuous any

823 Use of Out-of-range Pointer Offset Incorrect Calculation leads to PAR

leads to Pointer Out of Range

any any any any any Discrete any

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/122.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/123.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://samate.nist.gov/BF/Classes/PAR.html
https://samate.nist.gov/BF/Classes/IEX.html
https://cwe.mitre.org/data/definitions/126.html
https://samate.nist.gov/BF/Classes/BOF.html
https://samate.nist.gov/BF/Classes/IEX.html
https://cwe.mitre.org/data/definitions/127.html
https://samate.nist.gov/BF/Classes/IEX.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/806.html
https://cwe.mitre.org/data/definitions/823.html
https://samate.nist.gov/BF/Classes/PAR.html

17

BOF – # of Possible Weaknesses

⚫ Direct Causes: (2)

⚫ Attributes: (2,2,2,3,3,2)

⚫ Direct Consequences: (6)

⚫ Using only the attributes Access, Boundary, Location: 8 (=2x2x2)

⚫ Using all the attributes: 144 (=2x2x2x3x3x2)

Using all the attributes, the 3 direct causes, and 6 consequences, without constraints:
Total 2592 (= 3x(2x2x2x3x3x2)x6)

⚫ Using all the attributes, the 3 direct causes (Array Too Small, Too Much Data, and Wrong
Index / Pointer Out of Range), and the 6 direct consequences, with constraints: assuming that if the Cause is Array
Too Small or Too Much Data then Boundary=Above and Excursion=Continuous.
Total 1296 (=864+432)

Details:

⚫ 864 (=6x144) (the cases in which cause = Wrong Index / Pointer Out of Range)

⚫ 432 (=2x(2x1x2x3x3x1)x6) (the cases in which cause = Array Too Small or Too Much Data)

18

⚫ Information Exposure (IEX)

19

BF: Information Exposure Model

20

BF: Information Exposure (IEX)

⚫ Our Definition:

Information is leaked through legitimate or side channels.

Note that leakage to an entity that should not have information is included,
not just leakage that is a security concern.

IEX is related to: BOF, INJ, CIF, ENC, VRF, KMN, TRN, PRN.

Related CWEs and SFPs:

⚫ CWEs related to IEX are: 8, 11, 13, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 226,
244, 260, 359, 377, 385, 402, 403, 433, 488, 492, 495, 497, 498, 499, 524, 514, 515, 525, 527, 528, 529, 530, 532, 535,
536, 537, 538, 539, 540, 541,546, 548, 550, 552, 555, 598, 612, 615, 642, 651, 668.

There are many related CWEs, because information exposure can be the consequence of many weaknesses.

⚫ The only related SFP cluster is SFP Primary Cluster: Information Leak.

https://cwe.mitre.org/data/definitions/8.html
https://cwe.mitre.org/data/definitions/11.html
https://cwe.mitre.org/data/definitions/13.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/201.html
https://cwe.mitre.org/data/definitions/202.html
https://cwe.mitre.org/data/definitions/203.html
https://cwe.mitre.org/data/definitions/204.html
https://cwe.mitre.org/data/definitions/205.html
https://cwe.mitre.org/data/definitions/206.html
https://cwe.mitre.org/data/definitions/207.html
https://cwe.mitre.org/data/definitions/208.html
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/210.html
https://cwe.mitre.org/data/definitions/211.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/213.html
https://cwe.mitre.org/data/definitions/214.html
https://cwe.mitre.org/data/definitions/215.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/244.html
https://cwe.mitre.org/data/definitions/260.html
https://cwe.mitre.org/data/definitions/359.html
https://cwe.mitre.org/data/definitions/377.html
https://cwe.mitre.org/data/definitions/385.html
https://cwe.mitre.org/data/definitions/402.html
https://cwe.mitre.org/data/definitions/403.html
https://cwe.mitre.org/data/definitions/433.html
https://cwe.mitre.org/data/definitions/488.html
https://cwe.mitre.org/data/definitions/492.html
https://cwe.mitre.org/data/definitions/495.html
https://cwe.mitre.org/data/definitions/497.html
https://cwe.mitre.org/data/definitions/498.html
https://cwe.mitre.org/data/definitions/499.html
https://cwe.mitre.org/data/definitions/524.html
https://cwe.mitre.org/data/definitions/514.html
https://cwe.mitre.org/data/definitions/515.html
https://cwe.mitre.org/data/definitions/525.html
https://cwe.mitre.org/data/definitions/527.html
https://cwe.mitre.org/data/definitions/528.html
https://cwe.mitre.org/data/definitions/529.html
https://cwe.mitre.org/data/definitions/530.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/535.html
https://cwe.mitre.org/data/definitions/536.html
https://cwe.mitre.org/data/definitions/536.html
https://cwe.mitre.org/data/definitions/537.html
https://cwe.mitre.org/data/definitions/538.html
https://cwe.mitre.org/data/definitions/539.html
https://cwe.mitre.org/data/definitions/540.html
https://cwe.mitre.org/data/definitions/541.html
https://cwe.mitre.org/data/definitions/546.html
https://cwe.mitre.org/data/definitions/548.html
https://cwe.mitre.org/data/definitions/550.html
https://cwe.mitre.org/data/definitions/552.html
https://cwe.mitre.org/data/definitions/555.html
https://cwe.mitre.org/data/definitions/598.html
https://cwe.mitre.org/data/definitions/612.html
https://cwe.mitre.org/data/definitions/615.html
https://cwe.mitre.org/data/definitions/642.html
https://cwe.mitre.org/data/definitions/651.html
https://cwe.mitre.org/data/definitions/668.html

21

IEX: Causes, Attributes, and Consequences

22

CVE-2017-5754 description using IEX taxonomy:

IEX: Example – CVE-2017-5754 (Meltdown)

Cause: Hardware Behavior (CPU out-of-order execution)
Attributes:

Data Type: Any (passwords in password manager or browser, photos, emails, even business-critical documents)
Data Sensitivity: High
Data State: Stored (in kernel-memory registries of other processes or virtual machines in the cloud)
Data Size: Huge
Exposure: Selective
Frequency: On-Demand
Channel: Covert (cache-based timing)
Use: Any

Consequences: Any IEX consequence.

See: https://samate.nist.gov/BF/Examples/IEX.html

https://samate.nist.gov/BF/Examples/IEX.html

23

BF Methodology 1. Identify BF Clusters and Relationships

1.1. Identifying a BF class and its place in BF
• Research bugs found in source code (examine CWE, SFPs, STs, etc.) and:

→ Identify a new BF class.
• Research relationships with other BF classes and:

→ Add the class to a BF cluster

1.2. Evaluating BF
• Classify via BF at least three (eventually cover all) reported vulnerabilities (CVE and CAPEC).

Does defined BF structure allow
orthogonal representation of bugs
that lead to these vulnerabilities?

Yes

No

2. Develop BF Classes

2.1. Developing a BF class
• Research related weaknesses (CWEs, SFPs, etc.) and models (or create models):

→ Create an accurate and precise class definition.
→ Create taxonomy: chains of causes and consequences, attributes with values.

2.2. Evaluating a BF class
• Research reported vulnerabilities (CVEs) related to this class and describe at least three

(eventually cover all) using defined taxonomy for this BF class.

Does defined taxonomy allow
clear, unambiguous description of

these vulnerabilities?

Yes

No

Is BF completed?
No

Yes

(Guidelines for developing and evaluation of BF classes)

BF – complete orthogonal, attributes based classification of software bugs.

BF Class Definition:

• Concise, unambiguous description of the fault(s).

• Format: “the software does <<this and that wrong>>”.

BF Class Taxonomy:
• Causes
✓ What leads to the fault?

• Consequences (descriptive, not prescriptive)
✓ What the fault leads to?

• Attributes
✓ Focus on the failure attributes of this class.
✓ What parts of the system are involved in the fault?
✓ What are the details of the fault?
o What assumptions are violated? What parts of the definition are affected?
o What doesn’t happen that is supposed to? What happens that is not supposed

to? What exactly goes faulty (what data or resource)? How does it happen?

BF Description of a Vulnerability:
• Format: <<cause>> [(specifically <<sub-cause>>)] {leads to <<cause>> [(specifically

<<sub-cause>>)]} [that] allows <<bug-description-via-attributes>>, which may be
exploited for <<consequence>>{, leading to <<consequence>>}

[] - "zero or one"; {} - "zero or more"

START

END

24

Let’s Step Back for a Moment

→ Existing Repositories of Bugs,
 Vulnerabilities, and Attacks

→ Problems?

25

Repositories of Bugs, Vulnerabilities, and Attacks

• Common Weakness Enumeration (CWE)

• Software Fault Patterns (SFP)

• Semantic Templates (ST)

• NSA Center for Assured Software (CAS) Weakness Classes

• Software State-of-the-Art Resources (SOAR) Matrix

• Software Engineering Institute (SEI), Carnegie Mellon University, CERT C Coding Standard

• Common Vulnerabilities and Exposures (CVE)

• Open Web Application Security Project (OWASP): Vulnerability

• Common Attack Pattern Enumeration and Classification (CAPEC)

→ Let’s take a look at them…

26

Common Weakness Enumeration (CWE)

CWE is a “dictionary” of
observed bugs or flaws in software.

More than 600 distinct classes, e.g.,
✓ Buffer overflow
✓ Directory traversal
✓ OS injection
✓ Race condition
✓ Cross-site scripting
✓ Hard-coded password
✓ Insecure random numbers.

CWE is a community effort.

Fig. CWE Efforts Context and Community
[http://cwe.mitre.org/about/images/lg_consensus.jpg]

27

Use of CWE

CWE – for use by those who:

• Create software

• Analyze software for security flaws

• Provide tools & services for finding & defending against security flaws in software.

CWE Compatibility and Effectiveness Program:

1. CWE Searchable

2. CWE Output

3. Mapping Accuracy

Designations for products or services:

✓ CWE Compatible – meet 1) to 4)

✓ CWE Effective – meet all 1) to 6)

4. CWE Documentation

5. CWE Coverage

6. CWE Test Results

Static analysis tools:
• encouraged to map their reports to corresponding CWEs,
• so that the results from different tools could have

a standard baseline to be matched and compared.

28

Software Fault Patterns (SFP)

⚫ Software Fault Patterns (SFP) is a generalized description of
an identifiable family of computations that are:

✓ Described as patterns with an invariant core and variant parts

✓ Aligned with injury

✓ Aligned with operational views and risk through events

✓ Fully identifiable in code (discernable)

✓ Aligned with CWE

✓ With formally defined characteristics.

→ See the clusters in Table 2 here: DoD Software Fault Patterns (go to p.26)

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADB381215

29

Software Fault Patterns (SFP)

⚫ Software Fault Patterns (SFP): Classify, Identify patterns, Test cases generator.

⚫ SFP are a clustering of CWEs into related weakness categories.

⚫ Each cluster is factored into formally defined attributes, with:

✓ Sites (“footholds”)

✓ Conditions

✓ Properties

✓ Sources

✓ Sinks, etc.

⚫ SFP categories cover 632 CWEs,

⚫ plus there are 8 deprecated CWEs.

In addition, there are:

⚫ 21 primary clusters

⚫ 62 secondary clusters

⚫ 310 discernible CWEs

⚫ 36 unique SFPs.

30

Semantic Templates (ST)

Semantic templates (ST) build mental models,
which help us understand software
weaknesses.

ST factor out chains of causes, resources and
consequences that are present in CWEs.

Each ST is a human and machine
understandable representation of the
following phases:

1. Software faults that lead to a weakness
2. Resources that a weakness affects
3. Weakness attributes
4. Consequences/failures resulting from the

weakness.

Fig. Phrases in descriptions and common

consequences of CWE-120, colored according to ST:
Fault, Resource/Location, Weakness, Consequence

https://cwe.mitre.org/data/definitions/120.html

31

ST

STs build mental
models, which help us
understand software
weaknesses.

32

Other Repositories/Classifications

• The National Security Agency (NSA) Center for Assured Software (CAS) defines
Weakness Classes in its "Static Analysis Tool Study - Methodology“

• The Software State-of-the-Art Resources (SOAR) Matrix:

– Defines and describes a process for selecting and using appropriate analysis tools and
techniques for evaluating software for software (security) assurance.

– In particular, it identifies types of tools and techniques available for evaluating software,
as well as technical objectives those tools and techniques can meet.

• Software Engineering Institute (SEI), Carnegie Mellon University, CERT C Coding Standard

• Open Web Application Security Project (OWASP): Vulnerability

→ See BF website.

https://samate.nist.gov/BF/

33

Common Vulnerabilities and Exposures (CVE)

Common Attack Pattern Enumeration and Classification (CAPEC)

• CVE is a list of instances of security vulnerabilities in software.

– More than 9000 CVEs assigned in 2014 – Heartbleed is CVE-2014-0160.

– NIST National Vulnerability Database (NVD) – adds fixes, severity ratings, etc. for CVEs.

• CAPEC is a dictionary and classification taxonomy of known attacks

→ See: https://cve.mitre.org/

https://cve.mitre.org/

34

Problems with
Current Bug Descriptions

35

Problems With Current Bug Descriptions

The rise in cyberattacks lead to considerable community and government efforts
to record software weaknesses, faults, failures, vulnerabilities and attacks.

→ However, none of the resulting
repositories/enumerations are
complete nor close to formal.

36

CWE – the Best, but also …

⚫ CWE is widely used:

✓ By far the best dictionary of software weaknesses.

✓ Many tools, projects, etc. are based on CWE.

⚫ However, in CWE:

✓ For very formal, exacting work, the Definitions are often inaccurate, imprecise or ambiguous.

✓ Entrees are “coarse grained” –
each CWE bundles many stages, such as likely attacks, resources affected and consequences.

✓ The coverage is uneven –
some combinations of attributes well represented and others not appearing at all.

37

CWE – Imprecise Definitions

⚫ CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS
Command Injection'):

“The software constructs all or part of an OS command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that could
modify the intended OS command when it is sent to a downstream component. “

 → Note that “using input”, “intended command”, and “incorrectly neutralizes” are imprecise!

38

CWEs – Overlaps or Gaps in Coverage

e.g. Buffer Overflow

⚫ Writes before start and after end:
CWE-124: Buffer Underwrite (’Buffer Underflow')
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

versus

⚫ Writes (not expressed in title) in stack and heap:
CWE-121: Stack-based Buffer Overflow
CWE-122: Heap-based Buffer Overflow.

⚫ Reads before start and after end:
CWE-127: Buffer Under-read
CWE-126: Buffer Over-read

but

⚫ No reads from stack and heap.

… while slight variants go on and on:

⚫ CWE-123: Write-what-where Condition

⚫ CWE-125: Out-of-bounds Read

⚫ CWE-787: Out-of-bounds Write

⚫ CWE-786: Access of Memory Location Before Start of Buffer

⚫ CWE-788: Access of Memory Location After End of Buffer

⚫ CWE-805: Buffer Access with Incorrect Length Value

⚫ CWE-823: Use of Out-of-range Pointer Offset

39

CWE – Imprecise Definitions

⚫ Looking just at the cluster of buffer overflows, we see many problems.

⚫ Here is CWE-119, the “root” of buffer overflows.

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer:

“The software performs operations on a memory buffer, but it can read from or write to a memory location that is
outside of the intended boundary of the buffer.”

→ Note that “read from or write to a memory location” is not tied to the buffer!
→ Strictly speaking, this definition is not correct, as any variable is

“a memory location that is outside of the intended boundary of the buffer.”
→ Our definition says that the software can read or write through the buffer

a memory location that is outside that buffer.

And, this is just one example.

40

Before After Either End Stack Heap

Read CWE-127 CWE-126 CWE-125

Write CWE-124 CWE-120 CWE-123
CWE-787

CWE-121 CWE-122

Either R/W CWE-786 CWE-788

The empty cells in the table show the overlaps and gaps in the CWEs coverage of buffer overflow options
with the following attributes considered:

✓ read/write

✓ before/after

✓ stack/heap

CWEs – Overlaps or Gaps in Coverage

41

CWE – Gaps → Use of Approximate CWE

CVE-2018-19842 described with BF BOF

https://docs.google.com/document/d/11mbdNYAu8EH-lPsacmSYhZhOYkkiSCEDUULbYFAGkM4/edit

Note: This CVE was identified by Kevin Greene (MITRE) as an illustration of assigning an
approximate CWE (specifically, the generic CWE-125 Out-of-bounds Read), because there is no exact CWE
about Read from Above the boundary of a buffer on the Stack.

https://nvd.nist.gov/nvd.cfm?cvename=CVE-2018-19842
https://docs.google.com/document/d/11mbdNYAu8EH-lPsacmSYhZhOYkkiSCEDUULbYFAGkM4/edit
https://cwe.mitre.org/data/definitions/125.html

42

CWEs – Some are Too Generic

⚫ E.g., CWE-118 and CWE-119 are too generic.

⚫ They do not specifically talk about read or write, before or after, and stack or heap.

⚫ It's like to say "Oh, this is buffer overflow. Period." and give no specifics about the
particular bug you are describing.

⚫ While it is important to be able to give the specifics about the attributes we have identified
for BF BOF.

43

CWEs – Some are Only Causes

⚫ E.g., CWE-680 and CWE-823 describe causes for BOF.

⚫ While they may lead to buffer overflow bugs, these are not buffer overflow bugs themselves.

→ This is one more problem with CWE
✓ some CWEs are classified not by the bug, but by a potential consequence (in this case

buffer overflow) from that bug.

44

CWEs – Some are Too Detailed

e.g. Path Traversal – CWE for every tiny variant:

⚫ CWE-23: Relative Path Traversal

⚫ CWE-24: Path Traversal: '../filedir’

⚫ CWE-25: Path Traversal: '/../filedir’

⚫ CWE-26: Path Traversal: '/dir/../filename’

⚫ CWE-27: Path Traversal: 'dir/../../filename’

⚫ CWE-28: Path Traversal: '..\filedir’

⚫ CWE-29: Path Traversal: '\..\filename’

⚫ CWE-30: Path Traversal: '\dir\..\filename’

⚫ CWE-31: Path Traversal: 'dir\..\..\filename’

⚫ CWE-32: Path Traversal: '...' (Triple Dot)

⚫ CWE-33: Path Traversal: '....' (Multiple Dot)

⚫ CWE-34: Path Traversal: '....//’

⚫ CWE-35: Path Traversal: '.../...//'

Buffer overflow isn’t the only cluster with problems.

Looks like, it is a waste to have CWEs
for every tiny variant of path traversal.

And if some other variant were identified,
a new CWE would have to be created.

45

CWEs – Not Always Easy to Find

⚫ Example: How to figure out this CWE is related to Information Exposure

CWE-433: Unparsed Raw Web Content Delivery

⚫ SFP researchers found it by an automated process and put it in
SFP Secondary Cluster: Exposed Data.

⚫ But if person had to do this, search in CWE does not help much.

https://cwe.mitre.org/data/definitions/433.html

46

Software Fault Patterns (SFP) – Improve on CWEs
Parameters

Buffer

location
Access kind Access position

Boundary

exceeded

heap stack write read inside outside lower upper

119 - Improper

Restriction of

Operations within

Bounds of Buffer √ √ √ √ √ √ √

120 - Buffer

Copy without

Checking Size of

Input

√ √ √ √ √ √

121 - Stack

Overflow
√ √ √ √ √

122 - Heap

Overflow
√ √ √ √ √

123 - Write-what-

where Condition

√ √ √ √ √

124 - Buffer

Underwrite
√ √ √ √ √

125 - Out-of-

bounds read
√ √ √ √ √

126 - Buffer

Overread
√ √ √ √ √

127 - Buffer

Underread
√ √ √ √ √

CWE-119: Improper Restriction of Operations within the
Bounds of a Memory Buffer

Summary: The software performs operations on a memory
buffer, but it can read from or write to a memory location that
is outside of the intended boundary of the buffer.
Extended description: Certain languages allow direct
addressing of memory locations and do not automatically
ensure that these locations are valid for the memory buffer
that is being referenced. This can cause read or write
operations to be performed on memory locations that may be
associated with other variables, data structures, or internal
program data. As a result, an attacker may be able to execute
arbitrary code, alter the intended control flow, read sensitive
information, or cause the system to crash.
CWE-120: Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')

Summary: The program copies an input buffer to an output

buffer without verifying that the size of the input buffer is less

than the size of the output buffer, leading to a buffer

overflow.

Extended Description: A buffer overflow condition exists

when a program attempts to put more data in a buffer than it

can hold, or when a program attempts to put data in a

memory area outside of the boundaries of a buffer.

Common Consequences: Buffer overflows often can be used
to execute arbitrary code. Buffer overflows generally lead to
crashes.

⚫ SFP overcomes the problem of
combinations of attributes in CWE.

→ For example, the SFP factored
attributes are more clear than the
irregular coverage of CWEs.

47

Semantic Templates (ST) – Improve on CWEs, too

Parameters
Buffer

location
Access kind Access position

Boundary

exceeded

heap stack write read inside outside lower upper

119 - Improper

Restriction of

Operations

within Bounds of

Buffer

√ √ √ √ √ √ √

120 - Buffer

Copy without

Checking Size

of Input

√ √ √ √ √ √

121 - Stack

Overflow
√ √ √ √ √

122 - Heap

Overflow
√ √ √ √ √

123 - Write-

what-where

Condition
√ √ √ √ √

124 - Buffer

Underwrite
√ √ √ √ √

125 - Out-of-

bounds read
√ √ √ √ √

126 - Buffer

Overread
√ √ √ √ √

127 - Buffer

Underread
√ √ √ √ √

CWE-119: Improper Restriction of Operations within the Bounds of a
Memory Buffer

Summary: The software performs operations on a memory buffer, but
it can read from or write to a memory location that is outside of the
intended boundary of the buffer.
Extended description: Certain languages allow direct addressing of
memory locations and do not automatically ensure that these locations
are valid for the memory buffer that is being referenced. This can cause
read or write operations to be performed on memory locations that
may be associated with other variables, data structures, or internal
program data. As a result, an attacker may be able to execute arbitrary
code, alter the intended control flow, read sensitive information, or
cause the system to crash.

CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')

Summary: The program copies an input buffer to an output buffer

without verifying that the size of the input buffer is less than the size

of the output buffer, leading to a buffer overflow.

Extended Description: A buffer overflow condition exists when a

program attempts to put more data in a buffer than it can hold, or

when a program attempts to put data in a memory area outside of

the boundaries of a buffer.

Common Consequences: Buffer overflows often can be used to
execute arbitrary code. Buffer overflows generally lead to crashes.

⚫ STs build mental models, which help
us understand software weaknesses.

⚫ Each ST is a human and machine
understandable representation of:

1. Software faults that lead to a weakness

2. Resources that a weakness affects

3. Weakness attributes

4. Consequences/failures resulting from
the weakness.

48

Semantic Templates (STs) – Improve on CWEs, too

Parameters
Buffer

location
Access kind Access position

Boundary

exceeded

heap stack write read inside outside lower upper

119 - Improper

Restriction of

Operations

within Bounds of

Buffer

√ √ √ √ √ √ √

120 - Buffer

Copy without

Checking Size

of Input

√ √ √ √ √ √

121 - Stack

Overflow
√ √ √ √ √

122 - Heap

Overflow
√ √ √ √ √

123 - Write-

what-where

Condition
√ √ √ √ √

124 - Buffer

Underwrite
√ √ √ √ √

125 - Out-of-

bounds read
√ √ √ √ √

126 - Buffer

Overread
√ √ √ √ √

127 - Buffer

Underread
√ √ √ √ √

WEAKNESS

ACCESS AND

OUT-OF-BOUNDS

READ #125, #126,

#127, #786

ACCESS AND OUT-

OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN

OPERATIONS WITHIN THE

BOUNDS OF A MEMORY

BUFFER

#119

IMPROPER-ACCESS-OF-

INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-

AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-

BUFFER-SIZE-

CALCULATION

#131

INTEGER

OVERFLOW

#190 #680
OFF-BY-

ONE

#193

INCORRECT-

CALCULATION

#682

IMPROPER-

INPUT-

VALIDATION

#20

INTEGER

UNDERFLOW

#191 RETURN OF POINTER

VALUE OUTSIDE OF

EXPECTED RANGE

#466

IMPROPER

VALIDATION OF

ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT

CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')

#120

WRITE-WHAT-WHERE

CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED

#121

ARRAY

#129
HEAP-BASED

#122

MEMORY-

BUFFER

#119

BUFFER

#119

INDEXABLE-

RESOURCE

#118PART-OF

INDEX

(POINTER #466

INTEGER #129)

PART-OF

IMPROPER

HANDELING OF

EXTRA VALUES

#231

USE OF DANDEROUS

FUNCTIONS

#242
API ABUSE

#227
IMPROPER NULL

TERMINATION

#170

IMPROPER USE OF

FREED MEMORY

#415 #416

MISSING

INITIALIZATION

#456SIGN

ERRORS

#194 #195

#196

STRING

MANAGEMENT

API ABUSE

785 #134 #251

UNCONTROLLED

MEMORY

ALLOCATION

#789

INFORMATION

LOSS OR

OMMISSION

#199 #221

POINTER

ERRORS

#467 #468

INTEGER

COERCION

ERROR

#192

IMPROPER HANDLING OF

LENGTH PARAMETER

INCONSISTENCY

130

IS-A

WEAKNESS

ACCESS AND

OUT-OF-BOUNDS

READ #125, #126,

#127, #786

ACCESS AND OUT-

OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN

OPERATIONS WITHIN THE

BOUNDS OF A MEMORY

BUFFER

#119

IMPROPER-ACCESS-OF-

INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-

AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-

BUFFER-SIZE-

CALCULATION

#131

INTEGER

OVERFLOW

#190 #680
OFF-BY-

ONE

#193

INCORRECT-

CALCULATION

#682

IMPROPER-

INPUT-

VALIDATION

#20

INTEGER

UNDERFLOW

#191 RETURN OF POINTER

VALUE OUTSIDE OF

EXPECTED RANGE

#466

IMPROPER

VALIDATION OF

ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT

CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')

#120

WRITE-WHAT-WHERE

CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED

#121

ARRAY

#129
HEAP-BASED

#122

MEMORY-

BUFFER

#119

BUFFER

#119

INDEXABLE-

RESOURCE

#118PART-OF

INDEX

(POINTER #466

INTEGER #129)

PART-OF

IMPROPER

HANDELING OF

EXTRA VALUES

#231

USE OF DANDEROUS

FUNCTIONS

#242
API ABUSE

#227
IMPROPER NULL

TERMINATION

#170

IMPROPER USE OF

FREED MEMORY

#415 #416

MISSING

INITIALIZATION

#456SIGN

ERRORS

#194 #195

#196

STRING

MANAGEMENT

API ABUSE

785 #134 #251

UNCONTROLLED

MEMORY

ALLOCATION

#789

INFORMATION

LOSS OR

OMMISSION

#199 #221

POINTER

ERRORS

#467 #468

INTEGER

COERCION

ERROR

#192

IMPROPER HANDLING OF

LENGTH PARAMETER

INCONSISTENCY

130

IS-A

WEAKNESS

ACCESS AND

OUT-OF-BOUNDS

READ #125, #126,

#127, #786

ACCESS AND OUT-

OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN

OPERATIONS WITHIN THE

BOUNDS OF A MEMORY

BUFFER

#119

IMPROPER-ACCESS-OF-

INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-

AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-

BUFFER-SIZE-

CALCULATION

#131

INTEGER

OVERFLOW

#190 #680
OFF-BY-

ONE

#193

INCORRECT-

CALCULATION

#682

IMPROPER-

INPUT-

VALIDATION

#20

INTEGER

UNDERFLOW

#191 RETURN OF POINTER

VALUE OUTSIDE OF

EXPECTED RANGE

#466

IMPROPER

VALIDATION OF

ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT

CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')

#120

WRITE-WHAT-WHERE

CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED

#121

ARRAY

#129
HEAP-BASED

#122

MEMORY-

BUFFER

#119

BUFFER

#119

INDEXABLE-

RESOURCE

#118PART-OF

INDEX

(POINTER #466

INTEGER #129)

PART-OF

IMPROPER

HANDELING OF

EXTRA VALUES

#231

USE OF DANDEROUS

FUNCTIONS

#242
API ABUSE

#227
IMPROPER NULL

TERMINATION

#170

IMPROPER USE OF

FREED MEMORY

#415 #416

MISSING

INITIALIZATION

#456SIGN

ERRORS

#194 #195

#196

STRING

MANAGEMENT

API ABUSE

785 #134 #251

UNCONTROLLED

MEMORY

ALLOCATION

#789

INFORMATION

LOSS OR

OMMISSION

#199 #221

POINTER

ERRORS

#467 #468

INTEGER

COERCION

ERROR

#192

IMPROPER HANDLING OF

LENGTH PARAMETER

INCONSISTENCY

130

IS-A

WEAKNESS

ACCESS AND

OUT-OF-BOUNDS

READ #125, #126,

#127, #786

ACCESS AND OUT-

OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN

OPERATIONS WITHIN THE

BOUNDS OF A MEMORY

BUFFER

#119

IMPROPER-ACCESS-OF-

INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-

AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-

BUFFER-SIZE-

CALCULATION

#131

INTEGER

OVERFLOW

#190 #680
OFF-BY-

ONE

#193

INCORRECT-

CALCULATION

#682

IMPROPER-

INPUT-

VALIDATION

#20

INTEGER

UNDERFLOW

#191 RETURN OF POINTER

VALUE OUTSIDE OF

EXPECTED RANGE

#466

IMPROPER

VALIDATION OF

ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT

CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')

#120

WRITE-WHAT-WHERE

CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED

#121

ARRAY

#129
HEAP-BASED

#122

MEMORY-

BUFFER

#119

BUFFER

#119

INDEXABLE-

RESOURCE

#118PART-OF

INDEX

(POINTER #466

INTEGER #129)

PART-OF

IMPROPER

HANDELING OF

EXTRA VALUES

#231

USE OF DANDEROUS

FUNCTIONS

#242
API ABUSE

#227
IMPROPER NULL

TERMINATION

#170

IMPROPER USE OF

FREED MEMORY

#415 #416

MISSING

INITIALIZATION

#456SIGN

ERRORS

#194 #195

#196

STRING

MANAGEMENT

API ABUSE

785 #134 #251

UNCONTROLLED

MEMORY

ALLOCATION

#789

INFORMATION

LOSS OR

OMMISSION

#199 #221

POINTER

ERRORS

#467 #468

INTEGER

COERCION

ERROR

#192

IMPROPER HANDLING OF

LENGTH PARAMETER

INCONSISTENCY

130

IS-A

CAN PRE-CEDE

OCCURS IN

CAN PRECEDE

CAN

PRECEDE

CWE-119: Improper Restriction of Operations within the Bounds
of a Memory Buffer

Summary: The software performs operations on a memory
buffer, but it can read from or write to a memory location that is
outside of the intended boundary of the buffer.
Extended description: Certain languages allow direct addressing
of memory locations and do not automatically ensure that these
locations are valid for the memory buffer that is being
referenced. This can cause read or write operations to be
performed on memory locations that may be associated with
other variables, data structures, or internal program data. As a
result, an attacker may be able to execute arbitrary code, alter
the intended control flow, read sensitive information, or cause
the system to crash.

CWE-120: Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')

Summary: The program copies an input buffer to an output

buffer without verifying that the size of the input buffer is less

than the size of the output buffer, leading to a buffer overflow.

Extended Description: A buffer overflow condition exists when

a program attempts to put more data in a buffer than it can

hold, or when a program attempts to put data in a memory

area outside of the boundaries of a buffer.

Common Consequences: Buffer overflows often can be used to
execute arbitrary code. Buffer overflows generally lead to
crashes.

49

But SFP & ST Also Have Problems

⚫ Software Fault Patterns (SFP):

✓ are an excellent advance

✓ “factor” weaknesses into parameters,

✓ But:

• do not include upstream causes or consequences, and

• are based solely on CWEs.

→ SFPs do not tie fault clusters to:

– causes or chains of fault patterns

– consequences of a particular vulnerability.

→ Since SFP were derived from CWEs, more work is needed for embedded or mobile concerns, such as,
battery drain, physical sensors (e.g. Global Positioning System (GPS) location, gyroscope, microphone,
camera) and wireless communications.

Note: SFP is coupled with a meta-language, Semantics of Business Vocabularies and Rules (SBVR), in which causes,
threats, consequences, etc. may be expressed. However, SFP does not have an integrated means of expressing them.

50

But SFP & ST Also Have Problems

⚫ Semantic Templates (ST):

✓ Collect CWEs into four general areas:

• Software-fault

• Weakness

• Resource/Location

• Consequences.

✓ But:

• are only guides to aid human comprehension.

__

⚫ The other existing bug descriptions also have their own limitations.

⚫ They are based on CWEs and don’t go beyond CWEs.

51

➔ Need for Structured, Precise,
Orthogonal Approach

52

Need for Structured, Precise,
Orthogonal Approach

➢ Without accurate and precise classification and comprehension of all possible types of

software bugs, the development of reliable software will remain extremely challenging.

➢ As a result the newly delivered and the legacy systems will continue having security holes

despite all the patching to correct errant behavior.

We don’t (yet) know the best structure for bugs descriptions.

But, for analogies on what we are embarking on, let’s look at

some well-know organizational structures in science …

53

Periodic Table & Others to Describe Molecules

⚫ Greeks used the terms element and atom.
Aristotle: substances are a mix of Earth, Fire, Air, or Water.

⚫ Alchemists cataloged substances, such as alcohol, sulfur, mercury, and salt.
(note: Lavoisier had light and caloric on his 33 elements list!)

⚫ Periodic table reflects atomic structure & forecasts properties of missing elements.

(Source: Wikimedia Commons)

(Source: Reich Chemistry)

Zofran ODT has a chemical formula (C18H19N3O),
structural formula (picture), and a detailed name.

https://commons.wikimedia.org/w/index.php?curid=31017351
http://reich-chemistry.wikispaces.com/Ancient%20Time%20LG

54

Tree of Life

Discoveries of more than 1,000 new types of
Bacteria and Archaea over the past 15 years
have dramatically rejiggered the Tree of Life to
account for these microscopic life forms.

⚫ Divides life into three domains:

✓ Bacteria

✓ Archaea

✓ Eukaryotes.

⚫ Clearly shows "life we see around us – plants,
animals, humans” and other Eukaryotes –
represent a tiny percentage of world’s biodiversity.

Fig. The Tree of Life (Source: Berkeley)

http://www.nature.com/articles/nmicrobiol201648

55

Geographic Coordinate System

Geographic Coordinate System (Source: Wikipedia)

Specify Terrestrial Location with

Latitude, Longitude, and Elevation

Specify Any Terrestrial Location using Latitude, Longitude, and Elevation.

http://en.wikipedia.org/wiki/Geographic_coordinate_system

56

Precise Medical Language

Medical professionals have terms to precisely name muscles, bones, organs, conditions, diseases, etc.

• The caption uses precise medical terminology.
• They are not trying to obfuscate.
• They are "painting a picture" (adding arrows and

circles) with words.

(Source: http://i.stack.imgur.com/uLH9P.jpg)

→ So, just as a doctor would be hampered by only

being able to say, “this thingy here”, software

assurance work is more difficult, because of the lack

of a precise common vocabulary (ontology).

http://i.stack.imgur.com/uLH9P.jpg

57

Current BF Classes

58

Current BF Classes

1. Information Exposure (IEX)

2. Randomness Cluster (RND)

• Pseudo-Random Number Bugs (PRN)

• True-Random Number Bugs (TRN)

3. Cryptography Cluster (CRY)

• Key Management Bugs (KMN)

• Encryption Bugs (ENC)

• Verification Bugs (VRF)

4. Access Control Cluster (ACC)

• Identity Proofing (IDP)

• Authentication Bugs (ATN)

• Authorization Bugs (ATZ)

5. Memory Cluster (MEM)

• Memory Allocation Bugs (MAL)

• Memory Use Bugs (MUS)
 Buffer Overflow (BOF) → refined

6. Injection (INJ) → refined

7. Control of Interaction Frequency (CIF) → refined

59

Information Exposure Faults

Formalizing information exposure faults would help researchers and practitioners
identify them and avoid related failures.

To describe them, we developed:

• A general descriptive Model of Information Exposure

• One new BF class:

✓ Information Exposure (IEX)

60

Information Exposure (IEX)

61

Information Exposure

⚫ Information and data can be stored, transferred, and used by digital systems.

⚫ Information exposure (information leaks) occurs when
the system inadvertently reveals sensitive information inappropriately.

→ Exposure of sensitive information can be harmful on its own.
In addition, it could enable further attacks.

⚫ Through information exposure the software may reveal:

– login credentials

– private keys

– state and system data

– personal data

– financial data

– health data

– business data.

62

Information Exposure – Related Terms

⚫ The terms “data” and “information” are often used interchangeably

– Data is a set of values of qualitative or quantitative variables.

– Information is any entity or form that provides the answer to a question of some kind or resolves
uncertainty.

⚫ To what extent data is informative to someone depends on
how unexpected it is to that person.

– Data has no meaning, while

– Information has meaning.

⚫ Information and data are on a continuum:

– Bits in memory are data. Without external context (meaning), the bits might represent an integer, a
memory address, a set of flags or other low-level information.

– At a higher level, the integer could be someone’s age, the number of characters in a document, or
a temperature.

63

Information Exposure – Related Terms

⚫ In software, information is generated by processing data.

⚫ We distinguish between information that is sensitive and information that is not

– Certain kinds of information can be indirectly sensitive:
when revealed can lead to harmful consequences.

→ If sensitive information at rest is properly encrypted (see BF ENC),
 then information cannot be exposed, assuming a secure decryption key.

→ If information is communicated via a secure channel, it cannot be exposed either.

⚫ Sensitive information includes:

✓ Credentials

✓ System data

✓ State data

✓ Cryptographic data

✓ Digital documents

✓ Personally identifiable data

✓ Business data.

64

Information Exposure – Related Terms

⚫ Credentials include: passwords, tokens, smart cards, digital certificates, and biometrics, such as
fingerprints, hand configuration, retina, iris, and voice characteristics.

⚫ System data could be: pathnames, configurations, logs, and Web usage.

⚫ State data includes: operational data, such as SQL (Structured Query Language) table and column names,
and server names.

⚫ Cryptographic data is: hashes, keys, and keying material, such as cryptographic keys, initialization vectors,
shared secrets, domain parameters, random seeds, salts, and nonces.

65

Information Exposure – Related Terms

⚫ Personally identifiable data – could be used to distinguish people:

– personally identifiable information (PII):
e.g. SSN, driver’s license number, and ID card number

– personally identifiable financial information (PIFI) –
e.g. financial account numbers with security codes/ access codes/ passwords

– payment card information:
e.g. cardholder name, expiration date, card verification value (CVV2 for Visa), card validation code,
for MasterCard (CVC2), personal identification number (PIN) or PIN block, content of magnetic
stripe.

– protected health information:
e.g. patient medical record or payment history.

⚫ Business data:

– e.g. intellectual property and trade secrets, operational and inventory data, and industry-specific
data, in addition to customer and employee data.

66

To understand information exposure,

⚫ We developed a general descriptive model that

⚫ Shows through what channels software could expose information.

→ Exposure is to any entity that should not have that information,
not just information that is a security concern.

BF: Information Exposure Model

67

BF: Information Exposure Model

68

⚫ Information is stored on disks in files or in databases.

⚫ Programs (source code and executables) are also stored on a disk in files
and do not require any other resources.

– A program is comprised of functions invocations.

– Most functions process input data into output information or data.

– A process is a program in execution and holds resources such as
CPU, memory, storage, and I/O.

– A program can involve more than one process.

– A session is a temporary, interactive information interchange (I/O) between two or more devices, or
between a computer and a user (e.g. login session).

BF: Information Exposure Model

69

⚫ Information exposure may happen when:

– either unintended information is carried, or

– an unintended recipient gets the information.

⚫ The exposure may be:

– accidental or

– because of intentional attacker actions.

⚫ Exposure is through:

– Legitimate Channels

• incl. Diagnostic Channels

– Side Channels

• incl. Covert Channels

BF: Information Exposure Model

70

Information could leak through legitimate channels during normal use of software via:

• Information display

• Queries → e.g. query strings in SQL queries or GET requests

• Hardcoded information → e.g. passwords or cryptographic keys

• Class cloning

• Serializable classes

• Removing previously used information

• Buffer claeanup dead store removal

• Use of realloc()

• Session-ID length

• Sessions state boundaries

• Caching

• Session cleanup.

BF: IEX Model – Legitimate Channels

71

⚫ A diagnostic channel (error channel) is a legitimate channel that
helps users and developers diagnose, find, and correct input or code errors.

⚫ Information may be leaked via:

– error messages

– exception handling messages

– other responses to erroneous inputs or erroneous data processing.

⚫ If an attacker forces an internal fault,
it may divulge sensitive information,
including details on the software implementation logic.

BF: IEX Model – Diagnostic Channels

72

⚫ A side channel is not intended to transmit information;
however, it does transmit information.

⚫ Information may be revealed or deduced due to
discrepancies or behavioral inconsistencies:

– conveying different responses (e.g. depending on if an operation is successful or not)

– taking different time (e.g. CPU timing)

– consuming different power

– using different storage,

– emitting different electromagnetic radiation.

⚫ Behavioral inconsistency could be:

– internal

– external.

BF: IEX Model – Side Channels

73

⚫ A covert channel is a side channel that is
created deliberately as a hidden communication channel.

→ A covert channel, for example, can be created by abusing TCP/IP.

⚫ Unfortunately, a covert channel may be created by optimization techniques, such as:

– compiler optimizations

– speculative executions.

Examples of side/covert information exposure attacks are:

✓ Meltdown

✓ Spectre

✓ and the inference attacks.

BF: IEX Model – Covert Channels

74

⚫ In a side channel, it is common for an attacker to control both:

– the part that induces the side effect and

– the part that measures it.

⚫ In other cases, there could be two collaborating attackers:

– an unauthorized user controlling the part that induces the side effect and

– a third party controlling the part that measures it.

⚫ There could be also:

– only a passive attacker, who observes an existing (not induced) behavioral inconsistency.

→ Usually, statistical analysis of the measurements is involved.

BF IEX Model – More on Side Channels

75

BF: Information Exposure (IEX)

⚫ Our Definition:

Information is leaked through legitimate or side channels.

Note that leakage to an entity that should not have information is included,
not just leakage that is a security concern.

IEX is related to: BOF, INJ, CIF, ENC, VRF, KMN, TRN, PRN.

Related CWEs and SFPs:

⚫ CWEs related to IEX are: 8, 11, 13, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 226, 244, 260, 359,
377, 385, 402, 403, 433, 488, 492, 495, 497, 498, 499, 524, 514, 515, 525, 527, 528, 529, 530, 532, 535, 536, 537, 538, 539, 540, 541,546,
548, 550, 552, 555, 598, 612, 615, 642, 651, 668.

There are many related CWEs, because information exposure can be the consequence of many weaknesses.

⚫ The only related SFP cluster is SFP Primary Cluster: Information Leak.

https://cwe.mitre.org/data/definitions/8.html
https://cwe.mitre.org/data/definitions/11.html
https://cwe.mitre.org/data/definitions/13.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/201.html
https://cwe.mitre.org/data/definitions/202.html
https://cwe.mitre.org/data/definitions/203.html
https://cwe.mitre.org/data/definitions/204.html
https://cwe.mitre.org/data/definitions/205.html
https://cwe.mitre.org/data/definitions/206.html
https://cwe.mitre.org/data/definitions/207.html
https://cwe.mitre.org/data/definitions/208.html
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/210.html
https://cwe.mitre.org/data/definitions/211.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/213.html
https://cwe.mitre.org/data/definitions/214.html
https://cwe.mitre.org/data/definitions/215.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/244.html
https://cwe.mitre.org/data/definitions/260.html
https://cwe.mitre.org/data/definitions/359.html
https://cwe.mitre.org/data/definitions/377.html
https://cwe.mitre.org/data/definitions/385.html
https://cwe.mitre.org/data/definitions/402.html
https://cwe.mitre.org/data/definitions/403.html
https://cwe.mitre.org/data/definitions/433.html
https://cwe.mitre.org/data/definitions/488.html
https://cwe.mitre.org/data/definitions/492.html
https://cwe.mitre.org/data/definitions/495.html
https://cwe.mitre.org/data/definitions/497.html
https://cwe.mitre.org/data/definitions/498.html
https://cwe.mitre.org/data/definitions/499.html
https://cwe.mitre.org/data/definitions/524.html
https://cwe.mitre.org/data/definitions/514.html
https://cwe.mitre.org/data/definitions/515.html
https://cwe.mitre.org/data/definitions/525.html
https://cwe.mitre.org/data/definitions/527.html
https://cwe.mitre.org/data/definitions/528.html
https://cwe.mitre.org/data/definitions/529.html
https://cwe.mitre.org/data/definitions/530.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/535.html
https://cwe.mitre.org/data/definitions/536.html
https://cwe.mitre.org/data/definitions/537.html
https://cwe.mitre.org/data/definitions/538.html
https://cwe.mitre.org/data/definitions/539.html
https://cwe.mitre.org/data/definitions/540.html
https://cwe.mitre.org/data/definitions/541.html
https://cwe.mitre.org/data/definitions/546.html
https://cwe.mitre.org/data/definitions/548.html
https://cwe.mitre.org/data/definitions/550.html
https://cwe.mitre.org/data/definitions/552.html
https://cwe.mitre.org/data/definitions/555.html
https://cwe.mitre.org/data/definitions/598.html
https://cwe.mitre.org/data/definitions/612.html
https://cwe.mitre.org/data/definitions/615.html
https://cwe.mitre.org/data/definitions/642.html
https://cwe.mitre.org/data/definitions/651.html
https://cwe.mitre.org/data/definitions/668.html

76

IEX: Causes, Attributes, and Consequences

77

IEX: Attributes

⚫ Data Type – Credentials, System Data, State Data, Cryptographic Data,
Digital Documents, Personally Identifiable Data, Business Data, etc.

⚫ Data Sensitivity – High, Low. This indicates the sensitivity level of leaked data/information.

– Highly sensitive information that is properly encrypted,
or information that is non-sensitive
would not result in harm if exposed.

– Non-sensitive information could be:

• public records

• phone books, or

• online directories.

78

IEX: Attributes

⚫ Data State – Stored, Used, Transferred. This reflects if the data is at rest, in use, or in transit.

– Data can be at rest in:

• files (e.g. initialization, include, temporary, configuration, log server, debug, cleanup, email
attachment, login buffer, executable, backup, core dump, access control list, private data index)

• directories (e.g. Web root, FTP root, CVS repository), or

• on discs.

– Data can be in use by functions/programs via:

• source code (incl. comments)

• threads

• registries,

• cookies

• GUI

• environmental variables.

– Data can be also in transit:

• between processes or

• over a network.

79

IEX: Attributes

⚫ Data Size – Little, Some, Huge.
This indicates how much data/information is leaked.

– These distinctions are important in some cases:
→ For example, Heartbleed might not have been a severe problem if it just exfiltrated a little data.
The fact that it may exfiltrate a huge amount of data greatly increases the chance that very
important information will be leaked.

⚫ Exposure – Selective, Random.
This reflects if an attacker can choose what information to expose or where.

– Selective means the attacker can choose where and what to read.

– Random is like going through the trash (e.g. Heartbleed).

⚫ Frequency – Once, On-demand, On-timing, Rare, Often, Fast.
This indicates how often the exposure can/does occur.

– On-timing means depending on timing (e.g. in a race condition).

Note: Frequency * Size = Rate.

80

IEX: Attributes

⚫ Channel – Legitimate, Diagnostic, Side, Covert.
This indicates the medium by which information was leaked.

⚫ Use – Direct, Indirect.

– Direct means leaked data/information is valuable on its own.

– Indirect means it is only useful for launching other attacks.

→ IEX is a high level class, so sites do not apply.

81

IEX: Causes and Consequences

In the graph of causes:

⚫ Uncleared Before Release means information going from one control sphere back to the general pool.

⚫ Cross-Boundary Removal means information going from one control sphere to another control sphere.
(A control sphere is a set of resources and behaviors that are accessible to a single actor or a group of actors that
all share the same security restrictions.)

⚫ Protect Sensitive Data also covers preparing sensitive data.

⚫ Software/Hardware Behavior covers algorithms and execution.
Observable behavior (time, power, cache lines) depends on the data.

⚫ Improper Details include: passwords, paths, SQL query structure/logic, etc. in error/exception, etc.
messages.

82

IEX: Causes and Consequences

⚫ ENC includes:

– failure to encrypt (cleartext storage, recoverable format storage, cleartext transmission)

– failure to properly encrypt (inadequate encryption strength, use of risky/broken cryptographic
algorithm, missing required cryptographic step, use of hard-coded cryptographic key).

⚫ ATN/AUT includes:

– improper authentication

– credentials compromise

– account access.

⚫ INJ includes:

– adding commands and

– masking legitimate commands or information.

⚫ CIF includes limiting the number of failed log in attempts
(if there is no limit, account names or passwords may be discovered by brute force attacks).

Note: One IEX fault may lead to another IEX.

→ e.g. IEX of all client credit cards may be caused by

83

IEX: Causes and Consequences

Note: One IEX fault may lead to another IEX.

→e.g.,

IEX of all client credit cards may be caused by
earlier IEX of the password for a privileged account.

84

CVE-2007-5172:

“Quicksilver Forums before 1.4.1 allows remote attackers to obtain sensitive information by
causing unspecified connection errors, which reveals the database password in the resulting
error message.“ [1]

[1] The MITRE Corporation, CVE-2001-1141, http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2007-5172.

IEX: Example 1 – CVE-2007-5172

http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2007-5172

85

CVE-2007-5172 description using IEX taxonomy:

IEX: Example 1 – CVE-2007-5172

IEX 1 of password leads to ATN leads to IEX 2.
IEX 1
Cause: Improper Details (error message displays password)
Attributes:

Data Type: Credentials (password)
Data Sensitivity: High
Data State: Stored
Data Size: Little
Exposure: Selective
Frequency: On-Demand
Channel: Diagnostic (connection error message)
Use: Indirect

Consequences: ATN.
ATN (to be described once the ATN class is developed).

IEX 2
Cause: Failure to Properly Protect Sensitive Data (password)
Attributes:

Data Type: Any (user data)
Data Sensitivity: Low/High
Data State: Stored
Data Size: Huge
Exposure: Selective
Frequency: On-Demand
Channel: Legitimate
Use: Direct (valuable on its own)

Consequences: Any IEX consequence.

86

CVE-2004-0243:

“AIX 4.3.3 through AIX 5.1, when direct remote login is disabled, displays a different message if
the password is correct, which allows remote attackers to guess the password via brute force
methods.“ [1]

[1] The MITRE Corporation, CVE-2001-1141, http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-CVE-2004-0243.

IEX: Example 2 – CVE-2004-0243

http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-CVE-2004-0243

87

CVE-2004-0243 description using IEX taxonomy:

IEX: Example 2 – CVE-2004-0243

IEX 2
Cause: Failure to Properly Protect Sensitive Data (password)
Attributes:

Data Type: Any (user data)
Data Sensitivity: Low/High
Data State: Stored
Data Size: Huge
Exposure: Selective
Frequency: On-Demand
Channel: Legitimate
Use: Direct (valuable on its own)

Consequences: Any IEX consequence.

IEX 1 of password leads to ATN leads to IEX 2.
IEX 1
Cause: Program Behavior
 (different responses for correct vs incorrect password)
Attributes:

Data Type: Credentials (password)
Data Sensitivity: High
Data State: Used
Data Size: Little
Exposure: Selective
Frequency: On-Demand
Channel: Side (response inconsistency – message
replies allow brute force password guessing)
Use: Indirect

Consequences: ATN.
ATN (to be described once the ATN class is developed).

88

CVE-2017-5753:

“Systems with microprocessors utilizing speculative execution and branch prediction may allow
unauthorized disclosure of information to an attacker with local user access via a side-channel
analysis.“ [1]

CVE-2017-5715:

“Systems with microprocessors utilizing speculative execution and indirect branch prediction
may allow unauthorized disclosure of information to an attacker with local user access via a
side-channel analysis.“ [2]

[1] The MITRE Corporation, CVE-2001-1141, http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-CVE-2017-5753.

[2] The MITRE Corporation, CVE-2001-1141, http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-CVE-2017-5715.

IEX: Example 3 –
CVE-2017-5753 and CVE-2017-5715 (Spectre)

http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-CVE-2017-5753
http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-CVE-2017-5715

89

CVE-2017-5753 and CVE-2017-5715 description using IEX taxonomy:

IEX: Example 3 –
CVE-2017-5753 and CVE-2017-5715 (Spectre)

Cause: Hardware Behavior (CPU speculative execution)
Attributes:

Data Type: Any (user’s data)
Data Sensitivity: High
Data State: Stored
Data Size: Huge
Exposure: Selective
Frequency: On-Demand
Channel: Side (cache-based timing)
Use: Any

Consequences: Any IEX consequence.

90

CVE-2017-5754:

“Systems with microprocessors utilizing speculative execution and indirect branch prediction
may allow unauthorized disclosure of information to an attacker with local user access via a
side-channel analysis of the data cache.“ [1]

[1] The MITRE Corporation, CVE-2017-5754, http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-CVE-2017-5754.

IEX: Example 4 – CVE-2017-5754 (Meltdown)

http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-CVE-2017-5754

91

CVE-2017-5754 description using IEX taxonomy:

IEX: Example 4 – CVE-2017-5754 (Meltdown)

Cause: Hardware Behavior (CPU out-of-order execution)
Attributes:

Data Type: Any (passwords in password manager or browser, photos, emails, even business-critical documents)
Data Sensitivity: High
Data State: Stored (in kernel-memory registries of other processes or virtual machines in the cloud)
Data Size: Huge
Exposure: Selective
Frequency: On-Demand
Channel: Covert (cache-based timing)
Use: Any

Consequences: Any IEX consequence.

92

IEX – Conclusion

⚫ We presented:

– a general model of Information Exposure and

– defined a new BF class, (IEX), including:

• a rigorous definition

• static attributes of the class, and

• their related dynamic properties, such as proximate causes, consequences and sites.

⚫ IEX is a very pervasive class, as:

– many vulnerabilities lead to IEX, and

– IEX may further lead to other faults.

⚫ We analyzed particular vulnerabilities related to IEX and provide clear IEX descriptions.

⚫ We showed that the BF-structured descriptions are quite concise,
while still far clearer than unstructured explanations that we have found.

⚫ We had to refine many of the previously defined BF classes.

93

IEX – Conclusion

⚫ IEX joins other rigorously-defined BF classes, such as:

1. Randomness Cluster (RND)

• Pseudo-Random Number Bugs (PRN)

• True-Random Number Bugs (TRN)

2. Cryptography Cluster (CRY)

• Key Management Bugs (KMN)

• Encryption Bugs (ENC)

• Verification Bugs (VRF)

3. Access Control Cluster (ACC)

• Authentication Bugs (ATN)

• Authorization Bugs (AUT)

94

IEX – Conclusion

⚫ Lessons Learned and Future Work

– At first, we had difficulties distinguishing strictly security-related leaks from other information
exposure. However, we realized that “information exposure” is to any entity that should not have
that information, not just leaks that are a security concern.

– An IEX fault could actually be a cause of another IEX or the consequence of a preceding IEX. We
learned that as we add more classes, such as IEX, we start chaining classes, consequences and
causes in BF.

– Work on explaining more information exposure faults using IEX and chains of BF classes will help
us determine where our BF taxonomy needs refinement.

– We will have to expand and refine many of the previously created BF descriptions of faults.

→ Our goal is for BF to become software developers’ and testers’ “Best Friend.”

95

Randomness Cluster (RND):

⚫ Pseudo-Random Number Bugs (PRN)

⚫ True-Random Number Bugs (TRN)

96

RND: Randomness Classes in BF

Random number generators may have weaknesses (bugs) and

applications using such may become vulnerable to attacks.

Formalization of randomness bugs would help researchers and practitioners identify them
and avoid security failures.

We have developed a general descriptive model of randomness and have defined two
Randomness BF classes:

• True-Random Number Bugs (TRN)

• Pseudo-Random Number Bugs (PRN)

97

Randomness

⚫ Randomness has application in many fields, including:

✓ Cryptography

✓ Simulation

✓ Statistics

⚫ Any specific use has its own requirements for randomness

– e.g., random bit generation for cryptography or security purposes has
stronger requirements than generation for other purposes.

For cryptography or security purposes, NIST recommends use of cryptographically secure PRBGs:
subject to the requirements in NIST SP 800-90A, NIST SP 800-90B and NIST SP 800-90C.

⚫ Satisfying the requirements for a particular use can be surprisingly difficult.

⚫ Weaknesses (bugs) in RNGs may lead to:

✓ wrong results from the algorithms that use the generated numbers or

✓ allow attackers to recover secret values, such as passwords and cryptographic keys.

✓ Politics

✓ Science

✓ Gaming.

98

Randomness Generation

We separate randomness generation in two distinct processes:

⚫ True-random number generation:

➢ nondeterministic (full entropy)

➢ uses entropy sources.

⚫ Pseudo-random number generation:

➢ deterministic

➢ uses true-random numbers as seeds.

– PRBGs are used to extend the true-random seeds, produced by a TRBG –
if the seed has length n, the output of the PRBG can have length m, where m > n.

→ However, a PRBG cannot increase the entropy of its seed.

– It is possible though for a PRBG to use non-random seeds
(e.g., for generating random numbers for simulation or game algorithms).

99

Randomness Attacks

Examples of attacks related to randomness generation are:

➢ Direct RSA common factor attack

➢ Cryptanalytic attack

➢ Input based attack

➢ State compromise attack.

100

Our BF randomness bugs (RND) model:

⚫ Shows in which software components of TRNG and PRNG bugs can occur

⚫ Is descriptive and not prescriptive

→ Should not be used as a model for construction of RBGs
(NIST SP 800-90C specifies construction of RBGs using the mechanisms and
entropy sources described in SP 800-90A and SP 800-90B, respectively.)

BF: RND Model

101

TRN – True-Random Number Bugs
PRN – Pseudo-Random Number Bugs

TRBG: True-Random Bit Generator
TRNG: – True-Random Number Generator

PRBG – Pseudo-Random Bit Generator
PRNG – Pseudo-Random Number Generator
BC – Block Cipher

BF: RND
 Model

102

BF: RND Model

Two distinct processes:

⚫ TRN covers bugs related to:

➢ entropy sources

➢ TRBGs

➢ TRNGs.

Although, output from the former process may be used as input to the latter (see the red arrow),
they are distinct as bugs related to each have different causes, attributes, and consequences.

⚫ The random bits are optionally converted in a pseudo-random number based on the range
that applications provide as an argument.

⚫ If live entropy source is used, the PRBG is said to support prediction resistance.

⚫ PRNGs are algorithmic and can have bugs. Most PRNGs are not cryptographically secure.

⚫ PRN covers bugs related to:

➢ entropy pools

➢ PRBGs

➢ PRNGs.

103

BF: True-Random Number Bugs (TRN)

⚫ We define True-Random Number Bugs (TRN) as:

The software generated output does not satisfy all use-specific true-randomness
requirements.

Note that the output sequence is of random bits, where values are obtained from one or more
sources of entropy.

TRN is related to: PRN, ENC, VRF, KMN, IEX.

Related CWEs, SFPs:

✓ SFP Primary Cluster: Predictability, which is CWE-905 with members CWE 330 to 344.

✓ Among them, TRN CWEs: 330, 331, 332, 333, 334, 337, 339, 340, 341, 342, 343.

104

TRN: Causes, Attributes, and Consequences

105

TRN: Attributes

⚫ Function:

✓ Health Test

✓ Conditioning

✓ Mixing

✓ Output

✓ Converting.

⚫ Algorithm:

✓ Hash Function

✓ Block Cipher

✓ XOR, etc.

⚫ Used For (what the output sequence is used for):

✓ Seeding
– as a seed for a PRNG

✓ Generation
– of passwords or cryptographic keying material (keys, nonces).

106

TRN: Attributes

⚫ Randomness Requirement (this is the failed requirement):

✓ Sufficient Entropy

✓ Sufficient Space Size

✓ Non-Inferable.

➢ The notion of entropy used here is min-entropy, which is a measure of how difficult it is to
guess the most likely entropy source output. (Let X be a random variable such that the set of its possible
values is finite. Let P be the set of probabilities of X having those values. Then the min-entropy of X is –log2
max(P).)

➢ Space size – the number of elements of the space of possible outputs.
(If the number of different outputs is not sufficiently large, there is a vulnerability to a brute force attack.)

➢ Non-inferable – one cannot recover from known (guessed) information anything about the
TRBG output. (TRBGs used for cryptography/security must satisfy the Non-Inferable randomness requirement.)

→ TRN is a high level class, so sites do not apply.

107

TRN: Causes & Consequences

⚫ In the graph of causes:

– Incorrect Entropy Assessment may result in TRN output having insufficient entropy.

For example, a certain number of bits with full entropy may be needed, and because
of Incorrect Entropy Assessment, the output may have insufficient entropy.

⚫ In the graph of consequences:

– Inadequate Input to PRNG could be:
repeating, weak, insufficiently random, predictable, small space seed or other input.

– A program may crash or block if it runs out of random number".

– Denial of Service (DoS) can be a direct consequence.

– KMN as in finding private keys from public keys using a common factor attack.

– VRF as of using a predictable random number with a signature algorithm, such as DSA.

– IEX could be of the exact value of a generated random number or a small range of values from
which the generated random number is easy to figure out.

108

CVE-2008-0141:
“actions.php in WebPortal CMS 0.6-beta generates predictable passwords containing only the
time of day, which makes it easier for remote attackers to obtain access to any account via a
lostpass action.“ [1]

[1] The MITRE Corporation, CVE Common Vulnerabilities and Exposures, CVE-2008-0141.

TRN: Example – CVE-2008-0141

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0141

109

CVE-2008-0141 → using TRN taxonomy

TRN: Example – CVE-2008-0141

Cause: Inadequate Entropy Sources (current date/time and user name)
Attributes:

Function: Mixing
Algorithm: Concatenation
Used for: Generation (of password)
Randomness Requirement: Non-Inferable (time known from password reset time, name known from user register)

Consequences: IEX (of password), leading to ATN (Authentication Fault)

110

BF: Pseudo-Random Number Bugs (PRN)

⚫ We define Pseudo-Random Number Bugs (PRN) as: :
The software generated output does not satisfy all use-specific pseudo-randomness
requirements.

Note that the output sequence is of random bits or numbers from a PRNG.

PRN is related to: TRN, ENC, VRF, KMN, IEX.

Related CWEs, SFPs:

⚫ SFP Primary Cluster: Predictability, which is CWE-905 with members CWE 330 to 344.

⚫ Among them, PRN CWEs: 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343.

111

PRN: Causes, Attributes, and Consequences

112

PRN: Attributes

⚫ Function:

✓ Conditioning

✓ Mixing

✓ Entropy Assessment

✓ Seeding

✓ Reseeding

✓ Generate

✓ Converting.

⚫ Algorithm:

✓ Concatenation
– the usual mixing of output from IID sources

✓ Hash Function

✓ Block Cipher

✓ XOR.

113

PRN: Attributes

⚫ Used For (what the output sequence is used for):

✓ ASLR (Address Space Layout Randomization)

✓ Generation
– of passwords or cryptographic keying material (keys, nonces)

✓ Initialization
– of cryptographic primitives (e.g., an initialization vector for cipher block chaining mode of encryption; or a salt
for hashing)

✓ Input to Algorithm
– simulation, statistics, mathematics (e.g., Monte Carlo integration), or general algorithms.

https://en.wikipedia.org/wiki/Monte_Carlo_method

114

PRN: Attributes

⚫ Pseudo-Randomness Requirement (this is the failed requirement):

✓ Unpredictability/ Indistinguishability

✓ Prediction/Backtracking Resistance

✓ Sufficient Space Size

✓ Use Specific Statistical Tests.

The pseudo-random output sequence should be statistically independent and unbiased. It
should pass the use-specific statistical tests for randomness.

➢ Unpredictability – not possible to predict next generated output from previous output.

➢ Prediction Resistance –not possible to predict future output bits even if past or present state is known.
(Prediction resistance is not possible without a live entropy source.)

➢ Backtracking Resistance – not possible to recover (backtrack) past output bits based on knowledge of
the state at a given point in time.

➢ Indistinguishability for a PRNG – its output is computationally indistinguishable (i.e., by any
probabilistic polynomial time algorithm) from a truly random sequence.

➢ Space size – the number of elements of the space of possible outputs.

115

PRN: Attributes

PRNGs used for cryptography/security must satisfy the following requirements:

✓ Unpredictability/Indistinguishability

✓ Backtracking Resistance

✓ Sufficient Space Size.

Prediction Resistance however is not always required – e.g. for PIV cards.

→ PRN is a high level class, so sites do not apply.

116

CVE-2001-1141:
“The Pseudo-Random Number Generator (PRNG) in SSLeay and OpenSSL before 0.9.6b allows
attackers to use the output of small PRNG requests to determine the internal state information,
which could be used by attackers to predict future pseudo-random numbers.“ [1]

[1] The MITRE Corporation, CVE-2001-1141, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1141.

PRN: Example 1 – CVE-2001-1141

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1141

117

CVE-2001-1141 description using PRN taxonomy:

PRN: Example 1 – CVE-2001-1141

Cause: Improper PRNG Algorithm (C md_rand – the secret PRNG state is updated with portion,
as small as one byte, of the PRNG’s previous output, which is not secret)
Attributes:

Function: Mixing (back into entropy pool)
Algorithm: Hash Function (SHA-1 – used for PRNG output and to update its internal secret state)
Used For: Generation (of cryptographic keying material – nonces, cryptographic keys)
Pseudo-Randomness Requirements: Sufficient Space Size and Unpredictability
(can be predicted from previous value through brute force)

Consequences: KMN>Generate with IEX of future keying material and ENC>IEX of sensitive data

118

PRN: Example 2 – CVE-2008-4107

CVE-2008-4107: “The (1) rand and (2) mt_rand functions in PHP 5.2.6 do not produce
cryptographically strong random numbers, which allows attackers to leverage exposures in
products that rely on these functions for security-relevant functionality, as demonstrated by the
password-reset functionality in Joomla! 1.5.x and WordPress before 2.6.2, a different
vulnerability than CVE-2008-2107, CVE-2008-2108, and CVE-2008-4102.” [1]

[1] The MITRE Corporation, CVE-2008-4107, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4107

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4107

119

PRN: Example 2 – CVE-2008-4107

CVE-2008-4107 description using PRN taxonomy:

Cause: Improper PRNG Algorithms (not cryptographically strong PHP 5 rand and mt_rand)
Attributes:

Function: Generate (pseudo-random numbers)
Algorithms: e.g., LCG or LFSR, Mersenne Twister
Used For: Generation (of passwords)
Pseudo-Randomness Requirements: Unpredictability/ Indistinguishability and Prediction Resistance

Consequence: IEX (of password), leading to ATN

120

PRN: Example 3 – CVE-2009-3238

CVE-2009-3238: “The get_random_int function in drivers/char/random.c in the Linux kernel
before 2.6.30 produces insufficiently random numbers, which allows attackers to predict the
return value, and possibly defeat protection mechanisms based on randomization, via vectors
that leverage the function's tendency to "return the same value over and over again for long
stretches of time.“ [1]

[1] The MITRE Corporation, CVE-2009-3238, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3238

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3238

121

PRN: Example 3 – CVE-2009-3238

CVE-2009-3238 description using TRN and PRN taxonomy:

An TRN leads to a PRN.
TRN

Cause: Improper RNG Algorithm (same area is used for the hash array, allowing to repeatedly start from the same seed)
Attributes:

Functions: Mixing (of pid and jiffies), Conditioning
Algorithms: Concatenation, Hash Function (MD4)
Used For: Seeding

Randomness Requirements: Sufficient Entropy
Consequence: Inadequate Input to PRNG (repeating seed)

PRN
Cause: Inadequate Input to PRNG (repeating seed)
Attributes:

Function: Generate (pseudo-random numbers)
Used For: ASLR
Pseudo-Randomness Requirement: Unpredictability

Consequences: IEX of addresses

122

PRN: Example 4 – CVE-2017-15361
(ROCA – Return Of the Coppersmith Attack)

CVE-2017-15361:
“The Infineon RSA library 1.02.013 in Infineon Trusted Platform Module (TPM) firmware, such
as versions before 0000000000000422 - 4.34, before 000000000000062b - 6.43, and before
0000000000008521 - 133.33, mishandles RSA key generation, which makes it easier for
attackers to defeat various cryptographic protection mechanisms via targeted attacks, aka
ROCA. Examples of affected technologies include BitLocker with TPM 1.2, YubiKey 4 (before
4.3.5) PGP key generation, and the Cached User Data encryption feature in Chrome OS.” [1]

[1] The MITRE Corporation, CVE-2017-15361, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15361

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15361

123

PRN: Example 4 – CVE-2017-15361 (ROCA)

A KMN with inner PRN.
KMN:

Cause: Improper Algorithm Step (for generation of primes for RSA keys) leads to inner PRN
Attributes:

Cryptographic Data: Keying Material (keys)
Algorithm: RSA (key generation from two primes)
Operation: Generate (pair of public and private keys)

Consequences: Weak Public Key, which leads to IEX of Private Key.
Inner PRN:

Cause: Improper External Algorithm (generation of primes for RSA keys from random numbers and a constant
related to keys size) leads to Too Few Bits Requested
Attributes:

Functions: Converting, Seeding (low entropy requested)
Used for: Generation (of secret prime numbers)
Randomness Requirement: Sufficient Space Size (e.g., one random number is only 37 bits for 512-bit RSA keys)

Consequence: IEX of generated primes (which format allows keys fingerprinting, factorization with Coppersmith
algorithm, and finding random numbers and primes).

CVE-2017-15361 description using KMN, and PRN taxonomy:

124

Cryptography Cluster (CRY):

⚫ Key Management Bugs (KMN)

⚫ Encryption Bugs (ENC)

⚫ Verification Bugs (VRF)

125

Cryptography

⚫ Broad, complex, and subtle area.

⚫ Incorporates many clearly separate cryptographic processes, such as:

✓ Encryption/ Decryption

✓ Verification of data or source

✓ Key management.

⚫ Each cryptographic process
→ uses particular algorithms
(e.g. symmetric/ asymmetric encryption, MAC, digital-signature)

→ to achieve particular security service.
(e.g. confidentiality, integrity authentication, identity authentication, origin non-repudiation)

126

Cryptography Bugs

There are bugs if the software does not properly:

⚫ Transform data into unintelligible form

✓ Some transformations require keys – e.g. encryption and decryption

✓ While others do not require keys – e.g. secret sharing.

⚫ Verify:

✓ Authenticity – data integrity, data source identity, origin for non-repudiation, content of secret
sharing

✓ Correctness – for uses such as zero-knowledge proofs.

⚫ Manage keys

⚫ Perform other operations.

127

Cryptography Attacks

Examples of attacks are:

✓ Spoofing messages

✓ Brute force attack

✓ Replaying instructions

✓ Timing attack

✓ Chosen plaintext attack (CPA)

✓ Chosen ciphertext attack (CCA)

✓ Exploiting use of weak or insecure keys
(e.g. factorization of public key to obtain private key).

128

Cryptographic Store or Transfer

We use cryptographic store or transfer to illustrate the BF Cryptography Bugs (CRY) Classes:

• Encryption Bugs (ENC)

• Verification Bugs (VRF)

• Key Management Bugs (KMN)

Note: These classes may appear in many other situations such as:

• Self-sovereign identities

• Block ciphers

• Threshold cryptography.

We focus on transfer (or store) because it is:

✓ Well known a

✓ What most people think of when “cryptography” is mentioned.

129

Bugs in Cryptographic Store or Transfer

We define bugs in cryptographic store or transfer as:

The software does not properly encrypt/decrypt, verify, or manage keys
for data to be securely stored or transferred.

130

A modern, secure, flexible cryptographic storage or transfer protocol:

⚫ Likely involves subtle interaction between following processes:

✓ Encryption

✓ Verification

✓ Key Management

⚫ May involve multiple stages of:

✓ Agreeing on encryption algorithms

✓ Establishing public and private keys

✓ Creating session keys

✓ Digitally signing texts for verification.

Thus, Encryption may use Key Management, which itself uses Encryption and Verification.

→ Need of a Model of these recursive interactions and
 where potentially ENC, VRF, KMN, and other BF bugs could happen.

Bugs in Cryptographic Store or Transfer

131

BF: Model of Cryptographic Store or Transfer

132

BF: CRY Model – Key Management Bugs

⚫ KMN is a class of bugs related to key management.

⚫ Key management comprises:

✓ Key generation

✓ Key selection

✓ Key storage

✓ Key retrieval and distribution

✓ Determining and signaling when keys should be abandoned or replaced.

A particular protocol may use any or all of these operations.

133

BF: CRY Model – Key Management Bugs

⚫ Key Management could be by:

✓ a third party certificate authority (CA) – distributes public keys in signed certificates

✓ the source

✓ the user

Thus the Key Management area intersects the Source and User areas.

Key Management often uses a recursive round of encryption and decryption, and verification to
establish a shared secret key or session key before the actual plaintext is handled.

134

BF: CRY Model – Encryption Bugs

⚫ ENC is a class of bugs related to encryption.

⚫ Encryption comprises:

✓ Encryption by the source

✓ Decryption by the user.

⚫ Encryption/ decryption algorithms may be:

✓ Symmetric – uses same key for both

✓ Asymmetric – uses pairs of keys: one to encrypt, other to decrypt.

Public key cryptosystems are asymmetric.

The ciphertext may be sent directly to the user, and verification accompanies it separately.
The red line is a case where plaintext is signed or hashed and then encrypted.

135

BF: CRY Model – Verification Bugs

⚫ VRF is a class of bugs related to verification.

⚫ Verification:

o Takes a key and either the plaintext or the ciphertext
signs or hashes it then passes the result to the user.

o User uses the same key or the other member of the key pair to verify source.

136

BF: CRY Model – Keys Usage

⚫ Symmetric encryption – one secretly shared key (shKey) is used:

✓ Source encrypts with shKey

✓ User decrypts with shKey, too.

⚫ Asymmetric encryption – pairs of mathematically related keys are used,
source pair: (pbKeySrc, prKeySrc), user pair: (pbKeyUsr and prKeyUsr):

✓ Source:

o encrypts with pbKeyUsr

o signs with prKeySrc

✓ User:

o decrypts with prKeyUsr

o verifies with pbKeySrc.

137

BF: Encryption Bugs (ENC)

⚫ We define Encryption Bugs (ENC) as:

The software does not properly transform sensitive data (plaintext) into unintelligible form
(ciphertext) using cryptographic algorithm and key(s).

⚫ We define also the Decryption Bugs as:

The software does not properly transform ciphertext into plaintext using cryptographic
algorithm and key(s).

Note that “transform” is for confidentiality.

ENC is related to KMN, TRN, PRN, and IEX.

Related CWEs, SFPs and ST:

✓ CWEs: 256, 257, 261, 311-318, 325, 326, 327, 329, 780.

✓ SFP clusters: SPF 17.1 Broken Cryptography and SFP 17.2 Weak Cryptography under Primary Cluster:
Cryptography.

138

ENC: Causes, Attributes, and Consequences

139

ENC: Attributes

⚫ Sensitive Data – This is secret (confidential) data.

✓ Credentials: Password, Token, Smart Card, Digital Certificate,
Biometrics (fingerprint, hand configuration, retina, iris, voice.)

✓ System Data: Configurations, Logs, Web usage, etc.

✓ State Data

✓ Cryptographic Data: hashes, keys, and other keying material

✓ Digital Documents.

⚫ Data State – This reflects if data is in rest or use, or if data is in transit.

✓ Stored: data in rest or use from files (e.g. ini, temp, configuration, log server, debug, cleanup, email
attachment, login buffer, executable, backup, core dump, access control list, private data index),
directories (Web root, FTP root, CVS repository), registry, cookies, source code & comments, GUI,
environmental variables.

✓ Transferred: data in transit between processes or over a network.

140

ENC: Attributes

⚫ Algorithm –the key encryption scheme used to securely store/transfer sensitive data.

✓ Symmetric (secret) key algorithms (e.g. Serpent, Blowfish)
use one shared key.

✓ Asymmetric (public) key algorithms (e.g. Diffie-Hellman, RSA)
use two keys (public, private).

⚫ Security Service(s) – that was failed by the encryption process

✓ Confidentiality – the main security service provided by encryption.

✓ ~Integrity, ~Identity Authentication – in some specific modes of encryption.

→ ENC is a high level class, so sites do not apply.

141

CVE-2002-1946 → using ENC taxonomy
Cause: Weak Encryption Algorithm (one-to-one mapping)
Attributes:

Sensitive Data: Credentials (passwords)
Data State: Stored (in registry)
Algorithm: Symmetric (that allows obtaining shared key and decryption)
Security Service: Confidentiality

Consequence: IEX of Sensitive Data (credentials)

CVE-2002-1946: “Videsh Sanchar Nigam Limited (VSNL) Integrated Dialer Software 1.2.000, when the
"Save Password" option is used, stores the password with a weak encryption scheme (one-to-one
mapping) in a registry key, which allows local users to obtain and decrypt the password.“ [1]
[1] The MITRE Corporation, CVE Common Vulnerabilities and Exposures, CVE-2002-1946.

ENC: Example 1 – CVE-2002-1946

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2002-1946

142

ENC: Example 2 – CVE-2002-1697

CVE-2002-1697 → using ENC taxonomy
Causes: Insecure Mode of Operation (ECB) leads to Weak Encryption Algorithm (for same shared key produces same
ciphertext from same plaintext)
Attributes:

Sensitive Data: Any (Credentials, Cryptographic, …)
Data State: Transferred (over network)
Algorithm: Symmetric (that allows identifying patterns and data recovery)
 Security Service: Confidentiality

Consequence: IEX of Sensitive Data

CVE-2002-1697: “Electronic Code Book (ECB) mode in VTun 2.0 through 2.5 uses a weak encryption
algorithm that produces the same ciphertext from the same plaintext blocks, which could allow remote
attackers to gain sensitive information.” [1]
[1] The MITRE Corporation, CVE-2002-1697, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1697.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1697

143

BF: Verification Bugs (VRF)

⚫ Our Definition:

The software does not properly sign data, check and prove source, or assure data is not
altered.

Note that “check” is for identity authentication, “prove” is for origin (signer) non-repudiation, and
“not altered” is for integrity authentication.

VRF is related to KMN, TRN, PRN, ENC, ATN, IEX.

Related CWEs, SFPs and ST:

✓ CWEs: 295, 296, 347.

✓ SFP cluster: SFP 17.2 Weak Cryptography under Primary Cluster: Cryptography.

144

VRF: Causes, Attributes, and Consequences

145

VRF: Attributes

⚫ Verified Data – This is the data that needs verification. It may be confidential or public.

– Secret (confidential) Data: cryptographic hashes, secret keys, or keying material.

– Public Data: signed contract, documents, or public keys.

⚫ Data State – This reflects if data is in rest or use, or if data is in transit.

⚫ Algorithm – Hash Function + RND, Message Authentication Code (MAC), Digital Signature.

– Hash functions are used for integrity authentication. They use RND.

– MAC are symmetric key algorithms (one secret key per source/user), used for integrity
authentication, identity authentication. It needs authentication code generation, source
signs data, user gets tag for key and data, and verifies data by tag and key.

– Digital Signature is an asymmetric key algorithm (two keys), used for integrity and
identity authentication, and origin (signer) non-repudiation. It needs key generation,
signature generation, and signature verification.

MAC and Digital Signature use KMN and recursively VRF.

146

VRF: Attributes

⚫ Security Service – This is the security service the verification process failed.

– Data Integrity Authentication – for data and keys

– Identity Authentication – for source authentication

– Origin (Signer) Non-Repudiation – for source authentication.

→ VRF is a high level class, so sites do not apply.

147

CVE-2001-1585: “SSH protocol 2 (aka SSH-2) public key authentication in the development
snapshot of OpenSSH 2.3.1, available from 2001-01-18 through 2001-02-08, does not perform a
challenge-response step to ensure that the client has the proper private key, which allows
remote attackers to bypass authentication as other users by supplying a public key from that
user's authorized_keys file.“ [1]

[1] The MITRE Corporation, CVE Common Vulnerabilities and Exposures, CVE- 2001-1585.

VRF: Example 1 – CVE-2001-1585

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2001-1585

148

CVE-2001-1585 description using VRF taxonomy:
CVE 2001-1585 → VRF
Cause Missing Verification Step (challenge-response) in public key authentication
Attributes:

Verified Data: Any (Secret/ Public)
Data State: Transferred (over network)
Algorithm: Digital Signature (not using such allows private key not to be verified by public key)
Security Service: Identity Authentication

Consequence: IEX

VRF: Example 1 – CVE-2001-1585

149

VRF: Example 2 – CVE-CVE-2015-2141

CVE-2015-2141: “The InvertibleRWFunction::CalculateInverse function in rw.cpp in libcrypt++
5.6.2 does not properly blind private key operations for the Rabin-Williams digital signature
algorithm, which allows remote attackers to obtain private keys via a timing attack. .” [1]

[1] The MITRE Corporation, CVE-2141, http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2015-2141

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2015-2141

150

VRF: Example 2 – CVE-CVE-2015-2141

CVE-2015-2141 description using VRF taxonomy:
CVE 2015-2141 → VRF
Cause: Modification of Verification Algorithm by adding a step (blinding)
Attributes:

Verified Data: Any (Secret/ Public)
Data State: Transferred (over network)
Algorithm: Digital Signature (Rabin-Williams) (that allows obtaining the private key in cases of incorrect unblinding)
Security Service: Identity Authentication

Consequence: IEX

151

BF: Key Management Bugs (KMN)

⚫ Our Definition:

The software does not properly generate, store, distribute, use, or destroy cryptographic keys
and other keying material.

KMN is related to ENC, TRN, PRN, VRF, IEX.

Related CWEs, SFPs and ST:

✓ CWEs: 321, 322, 323, 324.

✓ SFP clusters: SFP 17.2 Weak Cryptography under Primary Cluster: Cryptography and
SFP 4.13 Digital Certificate under Primary Cluster: Authentication .

152

KMN: Causes, Attributes, and Consequences

153

KMN: Causes, Attributes, and Consequences

⚫ Cryptographic Data – Hashes, Keying Material, Digital Certificate.

⚫ Data State – This reflects if data is in rest or use, or if data is in transit.

⚫ Algorithm – Hash Function + RND, MAC, Digital Signature.

⚫ Operation –This is the failed operation: Generate uses RND.

– Store – includes update and recover

– Distribute – includes key establishment, transport, agreement, wrapping, encapsulation,
derivation, confirmation, shared secret creation; uses ENC and KMN (reclusively)

– Use

– Destroy.

→ KMN is a high level class, so sites do not apply.

154

BF: KMN Example (FREAK)–
CVE-2015-0204, CVE-2015-1637, CVE-2015-1067

FREAK – Factoring attack on RSA-ExportKeys

CVE-2015-0204: “The ssl3_get_key_exchange function in s3_clnt.c in OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and
1.0.1 before 1.0.1k allows remote SSL servers to conduct RSA-to-EXPORT_RSA downgrade attacks and facilitate brute-
force decryption by offering a weak ephemeral RSA key in a noncompliant role, related to the "FREAK" issue. NOTE: the
scope of this CVE is only client code based on OpenSSL, not EXPORT_RSA issues associated with servers or other TLS
implementations.” [1]

CVE-2015-1637: “Schannel (aka Secure Channel) in Microsoft Windows Server 2003 SP2, Windows Vista SP2, Windows
Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows
RT Gold and 8.1 does not properly restrict TLS state transitions, which makes it easier for remote attackers to conduct
cipher-downgrade attacks to EXPORT_RSA ciphers via crafted TLS traffic, related to the "FREAK" issue, a different
vulnerability than CVE-2015-0204 and CVE-2015-1067.” [2]

CVE-2015-1067: “Secure Transport in Apple iOS before 8.2, Apple OS X through 10.10.2, and Apple TV before 7.1 does
not properly restrict TLS state transitions, which makes it easier for remote attackers to conduct cipher-downgrade
attacks to EXPORT_RSA ciphers via crafted TLS traffic, related to the "FREAK" issue, a different vulnerability than CVE-
2015-0204 and CVE-2015-1637.” [3]

[1] The MITRE Corporation, CVE--2015-0204, https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0204

[2] The MITRE Corporation, CVE--2015-1637, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1637.

[3] The MITRE Corporation, CVE--2015-1067, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1067.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0204
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1637
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1067

155

BF: KMN Example (FREAK)

FREAK description using VRF taxonomy: An inner KMN leads to an inner ENC, which leads to an outer ENC.

Inner KMN:
Cause: Improper Offer of Weak Protocol (Export RSA – offered from MITM-tricked server and accepted by client)
Attributes:

Cryptographic Data: Keying Material (pair of private and public keys)
Data State: Transferred (over network)
Algorithm: Export RSA (512-bits key generation based on prime numbers,
such that private key can be obtained from public key through factorization)
Operation: Generate

Consequence: IEX Keying Material (private key)
Inner ENC:

Causes: KMN Fault leads to Exposed Private Key
Attributes:

Sensitive Data: Cryptographic (Pre-Master Secret)
Data State: Transferred (over network)
Algorithm: Asymmetric (RSA) (that allows decryption of Pre-Master Secret using exposed private key
and computation of Master Secret)
Security Service: Confidentiality

Consequence: IEX of Sensitive Data (Master Secret)

156

BF: KMN Example (FREAK)

Inner KMN and inner ENC only set up the secret key. Outer ENC is the actual general data transfer.

Outer ENC:
 Causes: KMN Fault leads to Exposed Secret Key (Master Secret)

Attributes:
Sensitive Data: Credentials (passwords, credit cards)
Data State: Transferred (over network)
Algorithm: Symmetric (key is known)
Security Service: Confidentiality

Consequence: IEX of Sensitive Data (credentials)

157

BF: KMN Example (FREAK)

Interestingly in this example the consequence from the first bug (inner KMN) causes the second bug (inner
ENC), whose consequences cause the third bug (outer ENC).

Inner KMN is:

⚫ A server bug – sending a weak key (that the client did not ask for) intended for KMN use by client
(encrypting Pre-Master Secret).

⚫ And also a client bug – as the client accepted the offer of using the insecure method, and therefore the
server proceeded. The client could have refused that offer.

Inner ENC is:

⚫ A client bug – using that weak key to encrypt the Pre-Master Secret, and then transmitting that weakly
encrypted Pre-Master Secret over a network that is not secure.

158

BF: KMN Example (FREAK) – Source Code

case SSL3_ST_SW_KEY_EXCH_B: case SSL3_ST_SW_KEY_EXCH_B:

alg_k = s->s3->tmp.new_cipher-

>algorithm_mkey;

alg_k = s->s3->tmp.new_cipher-

>algorithm_mkey;

if ((s->options & SSL_OP_EPHEMERAL_RSA)

#ifndef OPENSSL_NO_KRB5

&& !(alg_k & SSL_kKRB5)

#endif)

s->s3->tmp.use_rsa_tmp=1;

else

s->s3->tmp.use_rsa_tmp=0; s->s3->tmp.use_rsa_tmp=0;

if (s->s3->tmp.use_rsa_tmp if (

#ifndef OPENSSL_NO_RSA

if (alg_k & SSL_kRSA) { if (alg_k & SSL_kRSA) {

if (!SSL_C_IS_EXPORT(s->s3->tmp.new_cipher)) {

al=SSL_AD_UNEXPECTED_MESSAGE;

SSLerr(SSL_F_SSL3_GET_SERVER_CERTIFICATE,SSL_R_UNEXPECTED_ME

SSAGE);

goto f_err;

}

if ((rsa=RSA_new()) == NULL) { if ((rsa=RSA_new()) == NULL) {

SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_MALLOC_

FAILURE);

SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_MALLOC_FAILURE);

Server

Client

If client ciphersuit is non-export then returned

by server RSA keys should be also non-export.

Therefore, handshake that offers export RSA

key (512 bits, which is weak) should be

abandoned by client.

The buggy code includes a handshake that

enables accepting a 512-bit RSA key.

The fix is adding code that checks whether

client ciphersuit is non-export and for

abandoning the handshake if this is the case.

159

Access Control Cluster (ACC):
• Identity Proofing (IDP)

• Authentication Bugs (ATN)

• Authorization Bugs (ATZ)

<<still under development>>

160

Memory Cluster(ACC)
• Memory Allocation Bugs (MAL)

• Memory Use Bugs (MUS)
 Buffer Overflow (BOF) → refined

<<still under development>>

161

Buffer Overflow (BOF)

162

BF: Buffer Overflow (BOF)

⚫ Our Definition:

The software accesses through an array a memory location
that is outside the boundaries of that array.

This definition is clearer than CWE-119: Improper Restriction of Operations within the Bounds of a Memory
Buffer: “The software performs operations on a memory buffer, but it can read from or write to a memory
location that is outside of the intended boundary of the buffer.”

✓ clarifies that access is through the same buffer to which the intended boundary pertains.

✓ accurately, precisely, and concisely describes violation of memory safety.

Related CWEs, SFP and ST

CWEs are 119, 120, 121, 122, 123, 124, 125, 126, 127, 786, 787, 788, 805, 806, 823.

SFP cluster is SFP8 Faulty Buffer Access under Primary Cluster: Memory Access.

ST is the Buffer Overflow Semantic Template.

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/806.html
https://cwe.mitre.org/data/definitions/823.html
http://faculty.ist.unomaha.edu/rgandhi/st/bufferoverflowtemplate.pdf

163

<<OLD>>BOF: Causes, Attributes, and
Consequences

164

BOF: Causes, Attributes, and Consequences

165

Injection (INJ)

→ refined

166

BF: Injection (INJ)

⚫ Our Definition:

Due to input with language-specific special elements, the software assembles a command
string that is parsed into an invalid construct.

In other words, the command string is interpreted to have unintended commands, elements or
other structures.

INJ is related to: ATN, ...

Related CWEs, SFPs and ST:

✓ CWEs related to INJ are 74, 75, 77, 78, 80, 85, 87, 88, 89, 90, 93,94, 243, 564, 619, 643, 652.

✓ Related SFPs are SFP24 and SFP27 under Primary Cluster: Tainted Input, and SFP17 under Primary Cluster: Path Resolution.

✓ The corresponding ST is the Injection Semantic Template.

https://cwe.mitre.org/data/definitions/74.html
https://cwe.mitre.org/data/definitions/75.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/80.html
https://cwe.mitre.org/data/definitions/85.html
https://cwe.mitre.org/data/definitions/87.html
https://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/90.html
https://cwe.mitre.org/data/definitions/93.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/243.html
https://cwe.mitre.org/data/definitions/564.html
https://cwe.mitre.org/data/definitions/619.html
https://cwe.mitre.org/data/definitions/643.html
https://cwe.mitre.org/data/definitions/652.html
http://faculty.ist.unomaha.edu/rgandhi/st/injectiontemplate.pdf

167

<<OLD>>INJ: Causes, Attributes, and
Consequences

168

INJ: Causes, Attributes, and Consequences

169

Control of Interaction Frequency (CIF)

→ refined

170

BF: Control of Interaction Frequency (CIF)

⚫ Our Definition:

The software does not properly limit the number of repeating interactions per specified unit.

E.g. failed logins per day, one vote per voter per election (more for certain races!), maximum
number of books checked out at once, etc. Interactions in software could be per event or per
user.

This class shows that we must acknowledge outside or local “policies”.

⚫ Related CWEs, SFPs and ST:

✓ CWEs related to CIF are 799, 307, 837.

✓ The related SFP cluster is SFP34 Unrestricted Authentication under the Primary Cluster:
Authentication.

https://cwe.mitre.org/data/definitions/799.html
https://cwe.mitre.org/data/definitions/307.html
https://cwe.mitre.org/data/definitions/837.html

171

<<OLD>>CIF: Causes, Attributes, and
Consequences

172

CIF: Causes, Attributes, and Consequences

173

4. Benefits of Using BF

174

Benefits of Using BF

BF provides a superior, unified approach that allows us to:

⚫ Precisely and unambiguously express software bugs or vulnerabilities.

⚫ Explain clearly applicability and utility of different software quality or assurance
techniques or approaches.

⚫ More formally reason about assurance techniques or mitigation approaches that may
work for a fault with certain attributes (but not for the same fault with other
attributes).

175

Benefits of Using BF

With BF practitioners and researchers can more accurately, precisely and clearly:

⚫ Describe problems in software.

⚫ Clearly document the classes of bugs that a tool does and does not report.

⚫ Explain what vulnerabilities the proposed techniques prevent.

➢ Those concerned with software quality, reliability of programs and digital systems, or cybersecurity
→ will be able to make more rapid progress by more clearly labeling the results of errors in software.

➢ Those responsible for designing, operating and maintaining computer complexes
→ can communicate with more exactness about threats, attacks, patches and exposures.

176

BF: Future Work

⚫ One of our next steps is to explain more vulnerabilities using the developed BF classes.

⚫ Another step is to develop more and more BF classes.

→ Our goal is for BF to become the software developers’ and testers’ “Best Friend.”

176

177

Questions

https://samate.nist.gov/BF/

	Default Section
	Slide 1: The Bugs Framework (BF) – Your Best Friend?
	Slide 2: Know Your Weaknesses
	Slide 3: Objective and Need
	Slide 5: Resent External Presentations
	Slide 6: Outline

	BF -- Introduction
	Slide 7
	Slide 8
	Slide 9: BF Taxonomy
	Slide 10: BF Class Graph
	Slide 11
	Slide 12
	Slide 13: BF: Buffer Overflow (BOF)
	Slide 14: BOF: Causes, Attributes, and Consequences
	Slide 15: BOF: Example – CVE-2014-0160 (Heartbleed)
	Slide 16: BF Descriptions of BOF Related CWEs
	Slide 17: BOF – # of Possible Weaknesses
	Slide 18
	Slide 19: BF: Information Exposure Model
	Slide 20: BF: Information Exposure (IEX)
	Slide 21: IEX: Causes, Attributes, and Consequences
	Slide 22: IEX: Example – CVE-2017-5754 (Meltdown)
	Slide 23: BF Methodology

	Existing Repositories
	Slide 24
	Slide 25: Repositories of Bugs, Vulnerabilities, and Attacks
	Slide 26: Common Weakness Enumeration (CWE)
	Slide 27: Use of CWE
	Slide 28: Software Fault Patterns (SFP)
	Slide 29: Software Fault Patterns (SFP)
	Slide 30: Semantic Templates (ST)
	Slide 31: ST
	Slide 32: Other Repositories/Classifications
	Slide 33: Common Vulnerabilities and Exposures (CVE) Common Attack Pattern Enumeration and Classification (CAPEC)
	Slide 34
	Slide 35: Problems With Current Bug Descriptions
	Slide 36: CWE – the Best, but also …
	Slide 37: CWE – Imprecise Definitions
	Slide 38: CWEs – Overlaps or Gaps in Coverage
	Slide 39: CWE – Imprecise Definitions
	Slide 40: CWEs – Overlaps or Gaps in Coverage
	Slide 41: CWE – Gaps Use of Approximate CWE
	Slide 42: CWEs – Some are Too Generic
	Slide 43: CWEs – Some are Only Causes
	Slide 44: CWEs – Some are Too Detailed
	Slide 45: CWEs – Not Always Easy to Find
	Slide 46: Software Fault Patterns (SFP) – Improve on CWEs
	Slide 47: Semantic Templates (ST) – Improve on CWEs, too
	Slide 48: Semantic Templates (STs) – Improve on CWEs, too
	Slide 49: But SFP & ST Also Have Problems
	Slide 50: But SFP & ST Also Have Problems

	Need for New Approach
	Slide 51
	Slide 52
	Slide 53: Periodic Table & Others to Describe Molecules
	Slide 54: Tree of Life
	Slide 55: Geographic Coordinate System
	Slide 56: Precise Medical Language

	BF -- Current Classes
	Slide 57
	Slide 58: Current BF Classes

	Information Exposure
	Slide 59: Information Exposure Faults
	Slide 60
	Slide 61: Information Exposure
	Slide 62: Information Exposure – Related Terms
	Slide 63: Information Exposure – Related Terms
	Slide 64: Information Exposure – Related Terms
	Slide 65: Information Exposure – Related Terms
	Slide 66: BF: Information Exposure Model
	Slide 67: BF: Information Exposure Model
	Slide 68: BF: Information Exposure Model
	Slide 69: BF: Information Exposure Model
	Slide 70: BF: IEX Model – Legitimate Channels
	Slide 71: BF: IEX Model – Diagnostic Channels
	Slide 72: BF: IEX Model – Side Channels
	Slide 73: BF: IEX Model – Covert Channels
	Slide 74: BF IEX Model – More on Side Channels
	Slide 75: BF: Information Exposure (IEX)
	Slide 76: IEX: Causes, Attributes, and Consequences
	Slide 77: IEX: Attributes
	Slide 78: IEX: Attributes
	Slide 79: IEX: Attributes
	Slide 80: IEX: Attributes
	Slide 81: IEX: Causes and Consequences
	Slide 82: IEX: Causes and Consequences
	Slide 83: IEX: Causes and Consequences
	Slide 84: IEX: Example 1 – CVE-2007-5172
	Slide 85: IEX: Example 1 – CVE-2007-5172
	Slide 86: IEX: Example 2 – CVE-2004-0243
	Slide 87: IEX: Example 2 – CVE-2004-0243
	Slide 88: IEX: Example 3 – CVE-2017-5753 and CVE-2017-5715 (Spectre)
	Slide 89: IEX: Example 3 – CVE-2017-5753 and CVE-2017-5715 (Spectre)
	Slide 90: IEX: Example 4 – CVE-2017-5754 (Meltdown)
	Slide 91: IEX: Example 4 – CVE-2017-5754 (Meltdown)
	Slide 92: IEX – Conclusion
	Slide 93: IEX – Conclusion
	Slide 94: IEX – Conclusion

	Randomness Cluster (RND)
	Slide 95
	Slide 96: RND: Randomness Classes in BF
	Slide 97: Randomness
	Slide 98: Randomness Generation
	Slide 99: Randomness Attacks
	Slide 100: BF: RND Model
	Slide 101: BF: RND Model
	Slide 102: BF: RND Model
	Slide 103: BF: True-Random Number Bugs (TRN)
	Slide 104: TRN: Causes, Attributes, and Consequences
	Slide 105: TRN: Attributes
	Slide 106: TRN: Attributes
	Slide 107: TRN: Causes & Consequences
	Slide 108: TRN: Example – CVE-2008-0141
	Slide 109: TRN: Example – CVE-2008-0141
	Slide 110: BF: Pseudo-Random Number Bugs (PRN)
	Slide 111: PRN: Causes, Attributes, and Consequences
	Slide 112: PRN: Attributes
	Slide 113: PRN: Attributes
	Slide 114: PRN: Attributes
	Slide 115: PRN: Attributes
	Slide 116: PRN: Example 1 – CVE-2001-1141
	Slide 117: PRN: Example 1 – CVE-2001-1141
	Slide 118: PRN: Example 2 – CVE-2008-4107
	Slide 119: PRN: Example 2 – CVE-2008-4107
	Slide 120: PRN: Example 3 – CVE-2009-3238
	Slide 121: PRN: Example 3 – CVE-2009-3238
	Slide 122: PRN: Example 4 – CVE-2017-15361 (ROCA – Return Of the Coppersmith Attack)
	Slide 123: PRN: Example 4 – CVE-2017-15361 (ROCA)

	Cryptography Cluster (CRY)
	Slide 124
	Slide 125: Cryptography
	Slide 126: Cryptography Bugs
	Slide 127: Cryptography Attacks
	Slide 128: Cryptographic Store or Transfer
	Slide 129: Bugs in Cryptographic Store or Transfer
	Slide 130: Bugs in Cryptographic Store or Transfer
	Slide 131: BF: Model of Cryptographic Store or Transfer
	Slide 132: BF: CRY Model – Key Management Bugs
	Slide 133: BF: CRY Model – Key Management Bugs
	Slide 134: BF: CRY Model – Encryption Bugs
	Slide 135: BF: CRY Model – Verification Bugs
	Slide 136: BF: CRY Model – Keys Usage
	Slide 137: BF: Encryption Bugs (ENC)
	Slide 138: ENC: Causes, Attributes, and Consequences
	Slide 139: ENC: Attributes
	Slide 140: ENC: Attributes
	Slide 141: ENC: Example 1 – CVE-2002-1946
	Slide 142: ENC: Example 2 – CVE-2002-1697
	Slide 143: BF: Verification Bugs (VRF)
	Slide 144: VRF: Causes, Attributes, and Consequences
	Slide 145: VRF: Attributes
	Slide 146: VRF: Attributes
	Slide 147: VRF: Example 1 – CVE-2001-1585
	Slide 148: VRF: Example 1 – CVE-2001-1585
	Slide 149: VRF: Example 2 – CVE-CVE-2015-2141
	Slide 150: VRF: Example 2 – CVE-CVE-2015-2141
	Slide 151: BF: Key Management Bugs (KMN)
	Slide 152: KMN: Causes, Attributes, and Consequences
	Slide 153: KMN: Causes, Attributes, and Consequences
	Slide 154: BF: KMN Example (FREAK)– CVE-2015-0204, CVE-2015-1637, CVE-2015-1067
	Slide 155: BF: KMN Example (FREAK)
	Slide 156: BF: KMN Example (FREAK)
	Slide 157: BF: KMN Example (FREAK)
	Slide 158: BF: KMN Example (FREAK) – Source Code

	Access Control Cluster (ACC)
	Slide 159

	Memory Bugs Cluster (MEM)
	Slide 160
	Slide 161
	Slide 162: BF: Buffer Overflow (BOF)
	Slide 163: <<OLD>>BOF: Causes, Attributes, and Consequences
	Slide 164: BOF: Causes, Attributes, and Consequences

	Injection (INJ)
	Slide 165
	Slide 166: BF: Injection (INJ)
	Slide 167: <<OLD>>INJ: Causes, Attributes, and Consequences
	Slide 168: INJ: Causes, Attributes, and Consequences

	Control of Interaction Frequency (CIF)
	Slide 169
	Slide 170: BF: Control of Interaction Frequency (CIF)
	Slide 171: <<OLD>>CIF: Causes, Attributes, and Consequences
	Slide 172: CIF: Causes, Attributes, and Consequences

	Benefits of Using BF
	Slide 173
	Slide 174: Benefits of Using BF
	Slide 175: Benefits of Using BF
	Slide 176: BF: Future Work
	Slide 177: Questions

