The Bugs Framework (BF) — Introduction
BF - software Developers’ and Tes

Irena Bojanova
National Institute of Standards and Technology (NIST)

A

https://samate.nist.gov/BF/

N lgNaﬁonal Institute of Standards and Technology ¢ U.S. Department of Commerce

KAGW. Your VWWeaknesses

e They Know Your Weaknesses — Do You?

e Knowing what makes your software systems vulnerable to attacks is critical,
- as software vulnerabilities hurt:
security

reliability, and
availability of the system as a whole.

e Software — should be free of knrewn weaknesses

e Objective: Develop a complete, orthogonal, attributes based classification of software bugs that would
improve dramatically on the current CWE definitions (vocabulary) used for defining software
weaknesses, and how vulnerability classes are described for modern software development.

e Need:

v' CWE is a repository of known (reported) weaknesses in the form of a nomenclature (hnumbered
items) that has overlaps and gaps in coverage.

v" Current CWEs definitions are often inaccurate, imprecise or ambiguous, which makes it difficult to
measure, express, and explain the applicability of different software quality assurance techniques
or approaches for software security.

v Other existing classifications and guides also have their own problems related to coverage,
accuracy and precision.

e Gap: Software security issues are often described incorrectly, and defined inaccurately,
- which tremendously impacts on how threats, attacks, patches, and exposures are communicated.

a > wnp o~

Bugs Terminology

The Bugs Framework (BF)

Existing Repositories of Bugs, Vulnerabilities, and Attacks
Problems with Current Bug Descriptions

Need for Structured, Precise, Orthogonal Approach

Bugs Terminology

e Software Weakness (Bug)
"A piece of code that may lead to a vulnerability." [1]
e Security Vulnerability

"A property of system requirements, design, implementation, or operation that could be
accidentally triggered or intentionally exploited and result in a security failure." [1]

e Software Attack

"The use of an exploit(s) by an adversary to take advantage of a weakness(s) with the intent
of achieving a negative technical impact(s)." [2]

[1] Black, P., Kass, M., Koo. M., Fong, E. Source Code Security Analysis Tool Functional Specification Version 1.1, NIST
Special Publication 500-268 v1.1.

[2] The MITRE Corporation. Common Attack Pattern Enumeration and Classification (CAPEC), Glosary, Attack.

https://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268_v1.1.pdf
https://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268_v1.1.pdf
https://capec.mitre.org/about/glossary.html#Attack

ont.)

 Terminology ((

e Security Failure
"Any event that is a violation of a particular system's explicit or implicit security policy." [1]
v "the source of any failure is a latent vulnerability." [1]
v "if there is a failure, there must have been a vulnerability." [1]
e Source Code
"A series of statements written in a human-readable computer programming language.” [1]

A vulnerability is the result [of the exploitation] of one or more weaknesses in requirements, design,
implementation, or operation. Sometimes a weakness can never result in a failure, in which case it is not
exploitable and not a vulnerability. Such a weakness might be masked by another part of the software or
might only cause a failure in combination with another weakness. Thus we use the term "weakness"
instead of "flaw" or "defect." [1]

References
[1] Black, P., Kass, M., Koo. M., Fong, E. Source Code Security Analysis Tool Functional Specification Version 1.1, NIST Special Publication 500-268 v1.1.

https://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268_v1.1.pdf

The Bugs Framework (BF)

The Bugs Framework (BF) is
a precise descriptive language for bugs.

—> allows to more accurately and precisely define software bugs or
vulnerabilities.

< Factoring and restructuring of information in CWEs, SFPs, and STs,
and classifications from NSA CAS, IDA SOAR, SEI-CERT, and more.

(Just as the structure of the periodic table reflects the underlying atomic structure, we are

developing a taxonomy dictated by the "natural” organization of software bugs, while using as
ctennina ctonec known hiiae eniimeratione combpendia and collectione)

9

Irlaxonomy

BF is a set of bug classes. Each BF class:
e Has an accurate and precise definition and
e Comprises:

v" Level (high or low) - identifies the fault as language-related or semantic.

v' Attributes - identify the software fault.

v" Causes — bring about the fault.

v Consequences — to which the fault could lead.

v" Sites — locations in code where the fault might occur.

o At least one attribute (underlined) identifies the software fault.
o Causes and consequences are directed graphs.

o Sites are identifiable mainly for low level classes

o BF uses precise definitions and terminology.

BF is descriptive, not prescriptive.
v" It explains what happens.

v There's not enough detail to
usefully predict the result.

BF is language independent.

10

ClassName (ABR): <<concise definition>>.

Causes Attributes Consequences

<<attribute>>:
v’ <<value>>
v’ <<value>>
Vo

<<attribute>>:
v’ <<value>>
v’ <<value>>
Vo

<<attribute>>:
v’ <<value>>
v’ <<value>>
Vo

<<attribute>>:
v’ <<value>>
v’ <<value>>
Vo

<<consequence>>

<<consequence>>

<<cause>>

<<sub-cause>>
<<sub-cause>>

<<class>>

<<class>>

<<class>>

Quick Examples of BF Classes:
e Buffer Overflow (BOF)
e Information Exposure (IEX)

12

e Buffer Overflow (BOF)

13

e Qur Definition:

The software accesses through an array a memory location
that is outside the boundaries of that array.

This definition is clearer than CWE-119: Improper Restriction of Operations within the Bounds of a Memory
Buffer: “The software performs operations on a memory buffer, but it can read from or write to a memory
location that is outside of the intended boundary of the buffer.”

v' clarifies that access is through the same buffer to which the intended boundary pertains.
v' accurately, precisely, and concisely describes violation of memory safety.

Related CWEs, SFP and ST

CWEs are 119,120,121,122,123,124,125, 126,127,786, 787,788, 805, 806, 823.
SFP cluster is SFP8 Faulty Buffer Access under Primary Cluster: Memory Access.
ST is the Buffer Overflow Semantic Template.

14

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/806.html
https://cwe.mitre.org/data/definitions/823.html
http://faculty.ist.unomaha.edu/rgandhi/st/bufferoverflowtemplate.pdf

Causes

’”:___Input Not Checked PW\

//\“‘\

Incorrect Calculatlon

—

Array Too SmaII

Too Much Data

Result Fault:
v Overflow
Off By One v Underflow

v'Undefined
Missing Factor v'Truncation

Operator:

Operand Error:

Types:

II
[
f
f

H'_,_,_;—'—'_'_'__‘_—\—_
" Wrong Index/ .
“~_Pointer Out of Rang

@U LL Termlnatlh

\~¥//

e e

_———ﬂ__—_—.—__—__————__
< Incorrect Conversion
— _‘_'_,_,_;—'—"

Attributes

Access:
* Read
* Write
Boundary:
* Below
* Above
Location:
* Heap
* Stack

\ Magnitude:

* Small

* Moderate
* Far

Data Size:

+ Little

* Some

* Huge
Excursion:

* Continuous
* Discrete

ites, and Consequences

Consequences
Information
Change/Loss
Altered Control Flow
ATN/AUT
IEX

Arbitrary Code Execution
Resource Exhaustion
Program Crash

15

-2014-0160 (Heartbleed)

CVE-2014-0160 (Heartbleed) description using BOF taxonomy:

Cause: Input Not Checked Properly leads to Data Exceeds Array (specifically, Too Much Data)
Attributes:

Access: Read

Boundary: Above

Location: Heap

Data Size: Huge

Excursion: Continuous
Consequence: |EX (if not had been cleared - CWE-226)

See: https://samate.nist.qov/BF/Examples/BOF.html

16

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://samate.nist.gov/BF/Examples/BOF.html

—
—_
(o]

—
N
o

—
N

—
N
N

—
N
(O8]

—
N
~

—
N
(€3]

—
N
()]

—
N
~N

~
00
(o))

~N
(o]
~N

~
[o¢]

[00]
(6)]

0
(o))

(2]
[68)

CWE

Name

Improper Restriction of Operations within the
Bounds of a Memory Buffer

Buffer Copy without Checking Size of Input
(‘Classic Buffer Overflow")

Stack-based Buffer Overflow
Heap-based Buffer Overflow
Write-what-where Condition

Buffer Underwrite (‘Buffer Underflow")
Out-of-bounds Read

Buffer Over-read

Buffer Under-read

Access of Memory Location Before
Start of Buffer

Out-of-bounds Write

Access of Memory Location After
End of Buffer

Buffer Access with Incorrect Length Value
Buffer Access Using Size of Source Buffer

Use of Out-of-range Pointer Offset

BOF
Cause(s)

Wrong Index/ Pointer Out of Range

Array Too Small

any BOF cause
any BOF cause
any BOF cause
Wrong Index/ Pointer Out of Range
PAR_leads to Pointer Out of Range
any BOF cause
Wrong Index/ Pointer Out of Range

Wrong Index/ Pointer Out of Range

any BOF cause

Wrong Index/ Pointer Out of Range

Data Exceeds Array
Too Much Data (source size used)

Incorrect Calculation leads to PAR
leads to Pointer Out of Range

BF Class
BOF Attributes
Location Magnitude Data Size

any any any

Stack

Heap

Excursion

any

Continuous

Discrete

Continuous
Continuous

Discrete

Consequences

=
>

=
>

m
>

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/122.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/123.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://samate.nist.gov/BF/Classes/PAR.html
https://samate.nist.gov/BF/Classes/IEX.html
https://cwe.mitre.org/data/definitions/126.html
https://samate.nist.gov/BF/Classes/BOF.html
https://samate.nist.gov/BF/Classes/IEX.html
https://cwe.mitre.org/data/definitions/127.html
https://samate.nist.gov/BF/Classes/IEX.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/806.html
https://cwe.mitre.org/data/definitions/823.html
https://samate.nist.gov/BF/Classes/PAR.html

Possible Weaknesses

Direct Causes: (2).

Attributes: (2,2,2,3,3,2).

Direct Consequences: (6)

Using only the attributes Access, Boundary, Location: 8 (=2x2x2)

Using all the attributes: 144 (=2x2x2x3x3x2)

Using all the attributes, the 3 direct causes, and 6 consequences, without constraints:
Total 2592 (= 3x(2x2x2x3x3x2)x6)

Using all the attributes, the 3 direct causes (Array Too Small, Too Much Data, and Wrong

Index / Pointer Out of Range), and the 6 direct consequences, with constraints: assuming that if the Cause is Array
Too Small or Too Much Data then Boundary=Above and Excursion=Continuous.

Total 1296 (=864+432).

Details:
864 (=6x144) (the cases in which cause = Wrong Index / Pointer Out of Range).
432 (=2x(2x1x2x3x3x1)x6) (the cases in which cause = Array Too Small or Too Much Data).

18

e Information Exposure (IEX)

19

n

r-l

[ormati

Source
CPU
| ALU | | Cache | | Registers |
instructions data
Memory
data
| RAM | | ROM | s e e
data 1/O ‘ launch
Storage [Executables

(Data/Information |

| Disks |

| Files |

[Prngra ms
[Source Code]

| Databases |

|
J

on Exposure Mode|

———— e T T e — — — — ————— g mm s s s s s s s ——

radiation
datal/O

A J

data exposure

g
AE(3
Y

|
|
|
|
|
|
|
|
|
|
|
|
|
i
cleanup |
error message i
private variables | induce |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

p— —

side effects

cloning
'serialization |
[

responses |

measure

|
' side effects
I
|

[quer:ies |

lhardcoded | side

[not encrypted| data exposure
!

20

nformation Exposure (IEX)

e Our Definition:
Information is leaked through legitimate or side channels.

Note that leakage to an entity that should not have information is included,
not just leakage that is a security concern.

IEX is related to: BOF, INJ, CIF, ENC, VRF, KMN, TRN, PRN.

Related CWEs and SFPs:

CWEs related to IEX are: 8, 11, 13, 200, 201, 202, 203, 204, 205, 206, 207,208, 209, 210, 211,212,213, 214,215, 226, 244, 260, 359,
377,385,402, 403, 433, 488, 492, 495, 49/, 498, 499, 524, 514, 515, 525, 527, 528, 529, 530, 532, 535, 536, 537/, 538, 539, 540, 541,546,
9438, 550, 552, 555, 598, 612, 615, 642, 651, 668.

There are many related CWEs, because information exposure can be the consequence of many weaknesses.

The only related SFP cluster is SFP Primary Cluster: Information Leak.

21

https://cwe.mitre.org/data/definitions/8.html
https://cwe.mitre.org/data/definitions/11.html
https://cwe.mitre.org/data/definitions/13.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/201.html
https://cwe.mitre.org/data/definitions/202.html
https://cwe.mitre.org/data/definitions/203.html
https://cwe.mitre.org/data/definitions/204.html
https://cwe.mitre.org/data/definitions/205.html
https://cwe.mitre.org/data/definitions/206.html
https://cwe.mitre.org/data/definitions/207.html
https://cwe.mitre.org/data/definitions/208.html
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/210.html
https://cwe.mitre.org/data/definitions/211.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/213.html
https://cwe.mitre.org/data/definitions/214.html
https://cwe.mitre.org/data/definitions/215.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/244.html
https://cwe.mitre.org/data/definitions/260.html
https://cwe.mitre.org/data/definitions/359.html
https://cwe.mitre.org/data/definitions/377.html
https://cwe.mitre.org/data/definitions/385.html
https://cwe.mitre.org/data/definitions/402.html
https://cwe.mitre.org/data/definitions/403.html
https://cwe.mitre.org/data/definitions/433.html
https://cwe.mitre.org/data/definitions/488.html
https://cwe.mitre.org/data/definitions/492.html
https://cwe.mitre.org/data/definitions/495.html
https://cwe.mitre.org/data/definitions/497.html
https://cwe.mitre.org/data/definitions/498.html
https://cwe.mitre.org/data/definitions/499.html
https://cwe.mitre.org/data/definitions/524.html
https://cwe.mitre.org/data/definitions/514.html
https://cwe.mitre.org/data/definitions/515.html
https://cwe.mitre.org/data/definitions/525.html
https://cwe.mitre.org/data/definitions/527.html
https://cwe.mitre.org/data/definitions/528.html
https://cwe.mitre.org/data/definitions/529.html
https://cwe.mitre.org/data/definitions/530.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/535.html
https://cwe.mitre.org/data/definitions/536.html
https://cwe.mitre.org/data/definitions/537.html
https://cwe.mitre.org/data/definitions/538.html
https://cwe.mitre.org/data/definitions/539.html
https://cwe.mitre.org/data/definitions/540.html
https://cwe.mitre.org/data/definitions/541.html
https://cwe.mitre.org/data/definitions/546.html
https://cwe.mitre.org/data/definitions/548.html
https://cwe.mitre.org/data/definitions/550.html
https://cwe.mitre.org/data/definitions/552.html
https://cwe.mitre.org/data/definitions/555.html
https://cwe.mitre.org/data/definitions/598.html
https://cwe.mitre.org/data/definitions/612.html
https://cwe.mitre.org/data/definitions/615.html
https://cwe.mitre.org/data/definitions/642.html
https://cwe.mitre.org/data/definitions/651.html
https://cwe.mitre.org/data/definitions/668.html

s, and Consequences

Causes Attributes Consequences

Data Type:
* Credentials, System, State

* Cryptographic, Digital Documents
* Personally Identifiable, Business, ...
Data Sensitivity:
* High ATN/AUT
* Low
Data State:
* Stored
* Used
* Transferred ENC
Data Size:
* Little
* Some
* Huge
/| Exposure:
* Selective
* Random
Frequency:
* Once, On-demand, On-timing KMN
* Rare, Often, Fast
Channel:
* legitimate

v Diagnostic
o Side IEX
CIF v Covert
Use:
* Direct
IEX * Indirect

Failure to Properly Sanitize Sensitive Data
Uncleared Before Cross-Boundary
Release Removal

Failure to Properly Protect Sensitive Data

| ENC | | VRF | |KMN | |ATN/AUT|-

Software/Hardware Behavior —
Improper Details

INJ

VRF

-2017-5754 (Meltdown)

CVE-2017-5754 description using IEX taxonomy:

Cause: Hardware Behavior (CPU out-of-order execution)
Attributes:
Data Type: Any (passwords in password manager or browser, photos, emails, even business-critical
documents)
Data Sensitivity: High
Data State: Stored (in kernel-memory registries of other processes or virtual machines in the cloud)
Data Size: Huge
Exposure: Selective
Frequency: On-Demand
Channel: Covert (cache-based timing)
Use: Any
Consequences: Any |[EX consequence.

See: https://[samate.nist.gov/BF/Examples/IEX.html

23

https://samate.nist.gov/BF/Examples/IEX.html

START

J\ /J E NO C| OJ 0) g y 1. Identify BF Clusters and Relationships

1.1. Identifying a BF class and its place in BF
« Research bugs found in source code (examine CWE, SFPs, STs, etc.) and:
> - ldentify a new BF class.
* Research relationships with other BF classes and:
- Add the class to a BF cluster

(Guidelines for developing and evaluation of BF classes) — v

1.2. Evaluating BF
» Classify via BF at least three (eventually cover all) reported vulnerabilities (CVE and CAPEC).

BF — complete orthogonal classification of software bugs.

BF Class Definition:
« Concise, unambiguous description of the fault(s).
» Format: “the software does <<this and that wrong>>".

Does defined BF structure allow
orthogonal representation of bugs
that lead to these vulnerabilities?

BF Class Taxonomy:

+ Causes
v What leads to the fault? 2. Develop BF Classes
« Consequences (descriptive, not prescriptive) 2.1. Developing a BF class
v' What the fault leads to? « Research related weaknesses (CWEs, SFPs, etc.) and models (or create models):
¢ Attributes - Create an accurate anq precise class definition. . .
v Focus on the failure attributes of this class. - Create taxonomy: chains of causes and consequences, attributes with values.
v" What parts of the system are involved in the fault? l
v What are the details of the fault? ot |
: : 2 P 2 2.2. Evaluating a BF class
o What assurr]ptlons are VIOl.ated ? What parts of the definition a':e affected? + Research reported vulnerabilities (CVEs) related to this class and describe at least three
o What doesn’t happen that is supposed to? What happens that is not supposed (eventually cover all) using defined taxonomy for this BF class.

to? What exactly goes faulty (what data or resource)? How does it happen?

BF Description of a Vulnerability: No

« Format: <<cause>> [(specifically <<sub-cause>>)] {leads to <<cause>> [(specifically
<<sub-cause>>)]} [that] allows <<bug-description-via-attributes>>, which may be
exploited for <<consequence>>{, leading to <<consequence>>}

[1 - "zero or one"; {} - "zero or more No s BF completed?

YesT 24

Does defined taxonomy allow
clear, unambiguous description of
these vulnerabilities?

Let's Step Back for a Moment

- Existing Repositories of Bugs,
Vulnerabilities, and Attacks

- Problems?

25

gs, Vulnerabilities, and Attacks

« Common Weakness Enumeration (CWE)

« Software Fault Patterns (SFP)

« Semantic Templates (ST)

« NSA Center for Assured Software (CAS) Weakness Classes

« Software State-of-the-Art Resources (SOAR) Matrix

« Software Engineering Institute (SEl), Carnegie Mellon University, CERT C Coding Standard
« Common Vulnerabilities and Exposures (CVE)

« Open Web Application Security Project (OWASP): Vulnerability

« Common Attack Pattern Enumeration and Classification (CAPEC)

- Let's take a look at them...

26

common Weakness Enumeration (CWE)

Building CWE & Consensus ——

H [{] . . n .
CWE is a “dictionary” of every class of bug or flaw BN ety Uhad
. Publicly Available: Security Taxonomies, : Cenzi
in software. Researth, and Checklists i : KOM Anaytics
a R y 8 SPIDynamics ¢ o Security Checkmarx
— - ROSIROTK cracoDE .
Fortify Cigital OWASP Jecie \(Pcr\éﬁ;giansgg/ Previous égca"l’ﬁg} L Coverity Stanfsosrld- CERT CC
1eti i Software ‘ : 1% Taxonomies
More than 600 distinct classes, e.g Brian Chess [fcary McGrawill TopTen Jif SR - tistor 0 vuinerability o Kestrel
1 ErI | Vulnerability Research, and Teehnology
| Examples for Taxonon;ly Checklists
Buffer overflow | Gremplestor | Researc parasoft
| (PLOVER) Unisys Purdue
D ire Ctory traversa I Klockwork Ounce Labs Gr?e'?,?' . uc Security MIT Lincoln Labs
o . Berkeley University Univ. of
O S I nJ eCt I o n North Carolina State Marfanc
University (NCSU) Oricle

Race condition
Cross-site scripting

National
Hard-coded password Vil e ot

Standards

AN NI NI N NN

(NVD)

Insecure random numbers.

Common
Vulnerabilities
and Exposures
(CVE)

SANS
National Secure
Programming

DHS

CWE is a community effort. asurance | pde
Sodyor
Knowledge

Y
DHS's 'SwWA'
Object . and '
Management Bu'|Id Secgnty
Group System In' Web Sites
A Task
™ | openves
A;;pllca.tuon (DHS and NIST
Perg;:g Web Applicati CWE Software Assurance NSA Center for
(OWASP) € Sez?ri'tc; on T Metrics and Tool Assured Software
i Compatibility Evaluation (SAMATE)

Fig. CWE Efforts Context and Community
[http://cwe.mitre.org/about/images/Ig_consensus.jpg]

(WASC)

' ‘ Test Repositories J

CWE - for use by those who:
« Create software
« Analyze software for security flaws
» Provide tools & services for finding & defending against security flaws in software.

CWE Compatibility and Effectiveness Program:

1. CWE Searchable 4. CWE Documentation
2. CWE Output 5. CWE Coverage
3. Mapping Accuracy 6. CWE Test Results

Designations for products or services:
v~ CWE Compatible — meet 1) to 4)
v CWE Effective — meet all 1) to 6) Static analysis tools:
 also encouraged to map their reports to corresponding CWEs,

« so that the results from different tools could have a standard

baseline to be matched and compared.
28

Seftware Fault Pa

e Software Fault Patterns (SFP) is a generalized description of an identifiable family of
computations that are:

v’ Described as patterns with an invariant core and variant parts
v Aligned with injury

v Aligned with operational views and risk through events

v" Fully identifiable in code (discernable)

v Aligned with CWE

v" With formally defined characteristics.

- See the clusters in Table 2 here: DoD Software Fault Patterns (go to p.26)

29

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADB381215

Seltware

e Software Fault Patterns (SFP): Classify, Identify patterns, Test cases generator.

e SFP are a clustering of CWEs into related weakness categories.

e Each cluster is factored into formally defined attributes, with:
v" Sites (“footholds”)

v" Conditions e SFP categories cover 632 CWEs,

v" Properties e plus there are 8 deprecated CWEs

v' Sources > So, the CWEs defined as weaknesses total 640.
v" Sinks, etc.

In addition, there are:

e 21 primary clusters

e 62 secondary clusters
e 310 discernible CWEs
L

36 unique SFPs.
30

Semantic templates (ST) build mental models,
which help us understand software
weaknesses.

ST factor out chains of causes, resources and
consequences that are present in CWEs.

Each ST is a human and machine
understandable representation of the

following phases:
1. Software faults that lead to a weakness
2.Resources that a weakness affects
attributes
4. Consequences/failures resulting from the
weakness.

Fig. Phrases in descriptions and common

consequences of C\WE-120, colored according to ST
Fault, Resource/Location, , Consequence

CWE-120: Buffer Copy without Checking Size of Input ('Classic
)
Description Summary: The program copies an input buffer to an output

buffer without verifying that the size of the input buffer is less than the size
of the output buffer, leading to a

Extended Description: A buffer overflow condition exists when a program
attempts to put more data in a buffer than it can hold, or when a program
attempts to put data in a memory area outside of the boundaries of a buffer.
The simplest type of error, and the most common cause of

is the "classic" case in which the program copies the buffer w1th0ut
restricting how much is copied.

Common Consequences: often can be used to execute
arbitrary code, which is usually outside the scope of a program's implicit
security policy. This can often be used to subvert any other security service.

generally lead to crashes. Other attacks leading to lack of
availability are possible, including putting the program into an infinite loop.

31

https://cwe.mitre.org/data/definitions/120.html

Buffer Overflow Semantic Template

INTEGER

= SOFTWARE-FAULT

INTEGER

\D COERCION OVERFLOW IMPROPER STRING MISSING
N ERROR #190 #680 HANDELING OF MANAGEMENT INITIALIZATION
SIGN #192 EXTRA VALUES APl ABUSE #456
ERRORS INTEGER #231 # 785 #134 #251
UNDERFLOW

#194 #195
#196

SE OF DANDEROU
FUNCTIONS
#242

RETURN OF POINTER
VALUE OUTSIDE OF
EXPECTED RANGE
#466

ST build mental
models, which help us
understand software
weaknesses.

INCORRECT-
BUFFER-SIZE-
CALCULATION

API ABUSE
#227
L

BUFFER COPY WITHOUT
CHECKING SIZE OF INPUT
('CLASSIC BUFFER OVERFLOW')
#120

PROPER USE O
FREED MEMORY
#415 #416

POINTER
ERRORS
#467 #468

MPROPER NUL
TERMINATION
#170

IMPROPER
VALIDATION OF
ARRAY INDEX
#129 #789

MPROPER HANDLING OF
LENGTH PARAMETER
INCONSISTENCY
#130

INCORRECT-
CALCULATION
#682

VALIDATION
#20

CAN-PRECEDE
WEAKNESS CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED HEAP-BASED
#1121 #122

ACCESS AND
OUT-OF-BOUNDS
READ #125, #126,

ACCESS AND OUT-
OF-BOUNDS WRITE
#787, #788, #124

#127, #786
OCCURS-IN
MEMORY- INDEX
BUFFER (POINTER #466
INTEGER #129)
#119 —_—
FAILURE TO CONSTRAIN IS-A

PART-OF

INDEXABLE-
RESOURCE
#118

OPERATIONS WITHIN THE
BOUNDS OF A MEMORY
BUFFER
#119

BUFFER
#119

CONSEQUENCES UNCONTROLLED
MEMORY
ALLOCATION
#789

IMPROPER-ACCESS-OF-
INDEXABLE-RESOURCE #118

WRITE-WHAT-WHERE

CONDITION INFORMATION
CAN-PRECEDE #123 LOSS OR

OMMISSION
#199 #221

2l Repositories/Classifications

« The National Security Agency (NSA) Center for Assured Software (CAS) defines Weakness
Classes in its "Static Analysis Tool Study - Methodology”.

« The Software State-of-the-Art Resources (SOAR) Matrix:

— Defines and describes a process for selecting and using appropriate analysis tools and
techniques for evaluating software for software (security) assurance.

— In particular, it identifies types of tools and techniques available for evaluating software,
as well as technical objectives those tools and techniques can meet.

« Software Engineering Institute (SEl), Carnegie Mellon University, CERT C Coding Standard
« Open Web Application Security Project (OWASP): Vulnerability

- See BF website.

33

https://samate.nist.gov/BF/

Commoen Vulnerabilities and Exposures (CVE)
Commoen Attack Pattern Enumeration and Classification (CAPEC)

« CVE s alist of instances of security vulnerabilities in software.
— More than 9000 CVEs assigned in 2014 — Heartbleed is CVE-2014-0160.

— NIST National Vulnerability Database (NVD) — adds fixes, severity ratings, etc. for CVEs.

« CAPEC is a dictionary and classification taxonomy of known attacks

- See; https://cve.mitre.org/

34

https://cve.mitre.org/

Problems with
Current Bug Descriptions

35

Proplems With Current Bug Descriptions

The rise in cyberattacks lead to considerable community and government efforts to record
software weaknesses, faults, failures, vulnerabilities and attacks.

- However, none of the resulting
repositories/enumerations are
complete nor close to formal.

36

“also ...

e CWE is widely used:
v' By far the best dictionary of software weaknesses.
v' Many tools, projects, etc. are based on CWE.

e However, in CWE:

v" For very formal, exacting work, the Definitions are often inaccurate, imprecise or ambiguous.

v Entrees are “coarse grained” —
each CWE bundles many stages, such as likely attacks, resources affected and consequences..

v' The coverage is uneven -
some combinations of attributes well represented and others not appearing at all.

37

e CWE-78: Improper Neutralization of Special Elements used in an OS Command ('0OS
Command Injection’):

“The software constructs all or part of an 0S command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that could
modify the intended OS command when it is sent to a downstream component. “

- Note that “using input”, “intended command”, and “incorrectly neutralizes” are imprecise!

38

Jefinitions

e Looking just at the cluster of buffer overflows, we see many problems.
e Hereis CWE-119, the “root” of buffer overflows.

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer:

“The software performs operations on a memory buffer, but it can read from or write to a memory location that is
outside of the intended boundary of the buffer.”

- Note that “read from or write to a memory location” is not tied to the buffer!
—> Strictly speaking, this definition is not correct, as any variable is

“a memory location that is outside of the intended boundary of the buffer.”
-> Our definition says that the software can read or write through the buffer

a memory location that is outside that buffer.

And, this is just one example.

39

CWES — Overlaps

e.g. Buffer Overflow

e Writes before start and after end:

or Gaps in Coverage

CWE-124: Buffer Underwrite ('Buffer Underflow’)
CWE-120: Buffer Copy without Checking Size of Input (‘'Classic Buffer Overflow')

versus

e Writes (not expressed in title) in stack and heap:

CWE-121: Stack-based Buffer Overflow
CWE-122: Heap-based Buffer Overflow.

e Reads before start and after end:
CWE-127: Buffer Under-read
CWE-126: Buffer Over-read

but
e No reads from stack and heap.

... while slight variants go on and on:

CWE-123: Write-what-where Condition

CWE-125: Out-of-bounds Read

CWE-787: Out-of-bounds Write

CWE-786: Access of Memory Location Before Start of Buffer
CWE-788: Access of Memory Location After End of Buffer
CWE-805: Buffer Access with Incorrect Length Value
CWE-823: Use of Out-of-range Pointer Offset

40

CWEs — Overlaps or Gaps in Coverage

The empty cells in the table show the overlaps and gaps in the CWEs coverage of buffer overflow options
with the following attributes considered:

v' read/write
v' before/after

v’ stack/heap

CWE-127 CWE-126 CWE-125

CWE-124 CWE-120 CWE-123 CWE-121 CWE-122
CWE-787

CWE-786 CWE-/88

41

of Approximate CWE

CVE-2018-19842 described with BF BOF

https://docs.google.com/document/d/1T1TmbdNYAuU8EH-
IPsacmSYhZhOYkkiSCEDUULbYFAGkMA4/edit

Note: This CVE was identified by Kevin Greene (MITRE) as an illustration of assigning an
approximate CWE (specifically, the generic CWE-125 Out-of-bounds Read), because there is no
exact CWE about Read from Above the boundary of a buffer on the Stack.

42

https://nvd.nist.gov/nvd.cfm?cvename=CVE-2018-19842
https://docs.google.com/document/d/11mbdNYAu8EH-lPsacmSYhZhOYkkiSCEDUULbYFAGkM4/edit
https://docs.google.com/document/d/11mbdNYAu8EH-lPsacmSYhZhOYkkiSCEDUULbYFAGkM4/edit
https://cwe.mitre.org/data/definitions/125.html

CWES — Too Detal

e.g. Path Traversal — CWE for every tiny variant:

e CWE-23: Relative Path Traversal

e CWE-24: Path Traversal: '../filedir’

e CWE-25: Path Traversal: '/../filedir’

e CWE-26: Path Traversal: '/dir/../filename’

e CWE-27: Path Traversal: 'dir/../../filename’

e CWE-28: Path Traversal: .. \filedir’

e CWE-29: Path Traversal: \..\filename’

e CWE-30: Path Traversal: '\dir\..\filename’ BUf{)elr overflow isn't the only cluster with
e CWE-31: Path Traversal: 'dir\..\..\filename' PORIEmS.

e CWE-32: Path Traversal:'...' (Triple Dot) Looks like, it is a waste to have CWEs

e CWE-33: Path Traversal: '...." (Multiple Dot) for every tiny variant of path traversal.

e CWE-34: Path Traversal:"....//’ And if some other variant were identified,
e CWE-35: Path Traversal:'.../...//' a new CWE would have to be created.

43

WES — Not Always Easy to Find

e Example on how would you find this is a CWE relates to Information Exposure

CWE-433: Unparsed Raw Web Content Delivery

e SFP researchers found it by an automated process and put it in
SFP Secondary Cluster: Exposed Data.

e Butif a person had to do this, the name of the CWE does not help much.

44

https://cwe.mitre.org/data/definitions/433.html

Software Fault Patterns (SFP) -
mprove on CWEs

CWE-119: Improper Restriction of Operations within the Bounds Parameters Access Access position Boundary
e SFP overcomes the prob]em of a Memory Buffer kind 2 exceeded
. . . Summary: The software performs operations on a memory
Of com b N atlon S Of attrl butes buffer, but it can read from or write to a memory location that is
. outside of the intended boundary of the buffer.
|n CWE Extended description: Certain languages allow direct addressing
of memory locations and do not automatically ensure that these 119 -
locations are valid for the memory buffer that is being Imprqur
referenced. This can cause read or write operations to be CR)?)(SBtrg(t:ith)c;lr; of ~ ~ ~ ~ ~ ~ ~
performed on memory locations that may be associated with L
9 For exa m ple' the S FP fa Ctored other variables, data structures, or internal program data. As a \é‘;'tgrﬁzl?unds
1 result, an attacker may be able to execute arbitrary code, alter
attrl bUteS a re m O re Clear th a n the intended control flow, read sensitive information, or cause 120 - Buffer
i the system to crash. Copy without
the irregular coverage of oo I Y v VoA
CW ES of Input
CWE-120: Buffer Copy without Checking Size of Input ('Classic 121 - Stack N N \ N \
Buffer Overflow') Overflow
Summary: The program copies an input buffer to an output 122 - Heap \/ \/ \/ \/ \/
buffer without verifying that the size of the input buffer is less Overflow
than the size of the output buffer, leading to a buffer overflow. 123 - Write- gl gl J J
Extended Description: A buffer overflow condition exists when \gzig;’t\;gﬁre
a program attempts to put more data in a buffer than it can
hold, or when a program attempts to put data in a memory area 124 - Buffer \ \ \ N N
outside of the boundaries of a buffer. Underwrite
Common Consequences: Buffer overflows often can be used to 125 - Out-of- \/ \/ \/ \/ \/
execute arbitrary code. Buffer overflows generally lead to bounds read
crashes.
126 - Buffer N \ N N \
Overread
127 - Buffer \/ \/ \/ \/ \/
Underread

45

STs build mental models, which help
us understand software weaknesses.

Each ST is a human and machine
understandable representation of:
1. Software faults that lead to a weakness
2. Resources that a weakness affects
3. attributes
4

Consequences/failures resulting from
the weakness.

CWE-119:
a

Summary: The software performs operations on a
, but it can

Extended description: Certain languages allow direct addressing.,

of and do not automatically ensure that these
locations are valid for the memory buffer that is being
referenced. This can

.Asa
result, an attacker may be able to execute arbitrary code, alter
the intended control flow, read sensitive information, or cause
the system to crash.

CWE-120: Copy without Checking Size of Input ('Classic

)

Summary: The program copies an input to an output
without verifying that the size of the input is less
than the size of the output , leading to a
Extended Description: A condition exists when
a program attempts to put more data in a than it can
hold, or when a program attempts to put data in a

outside of the boundaries of a
Common Consequences:
execute arbitrary code.

crashes.

often can be used to
generally lead to

Parameters - Access kind Access position

Boundary
exceeded

\/

119 - Improper
Restriction of

Operations ~ ~ ~ ~ ~

within Bounds of
Buffer
120 - Buffer

Copy without
Checking Size v v v

of Input

121 - Stack \/ \/ \/
Overflow

122 - Heap
Overflow v v v

123 - Write-
what-where \/ \/ \/
Condition

124 - Buffer
Underwrite

125 - Out-of-
bounds read

126 - Buffer
Overread

127 - Buffer

2. 2 =2 2
2. 2 =2 =2

Underread

46

CWE-119: Boundary
OVERFLOW MPROPER STRING a

WISSING exceeded
#190#680 v MANAGEMENT Summ e software performsoperations on a

EXTRA VALUES APIABUSE "
INTEGER #231 #785 #134 #251 z .
UNDERFLOW @z@) 7) but it can
#191 RETURN OF POINTER FUNCTIONS
VALUE OUTSIDE OF #242
EXPECTED RANGE APIABUSE .
#466 #227
AROUND POINTER PROPER NUL PROPER USEG Extended description: Certain languages a\ow direct afldressing
ERRORS TERMINATION FREED MEMORY "

WRAP-
RROR #128
1467468 10 fuspme of and do not automatidfly ensurefthat these = 1119 - Improper

PROPER HANDLING OF IMPROPER BUFFER COPY WITHOUT

Parameters

SOFTWARE-FAULT Access kind Access position

INTEGER INTEGER

COERCION

ERROR
#192

ERRORS
#194 #195
#196

BUFFER-SIZE-
CALCULATION

TMPROPER-

INPUT- INCORRECT- LENGTH PARAMETER VALIDATION OF CHECKING SIZE OF INPUT Restriction of
VALIDATION CALCULATION INCONSISTENCY ARRAY INDEX (‘CLASSIC BUFFER OVERFLOW) :
#20 #682 #129#789 #120 Ope rations ,\/ »\/ «\/ «\/ -\/ ,\/ ,\/
within Bounds of
CAN

.As a Buffer
result, an attacker may be aD¥¢ to execute arbitrary ¢ode, alter 120 - Buffer
the intended control flow, read\sensitiv@\informatign, or cause C ;

’ 4 opy without
the system to crash. Py \/ \/ \/ \/ \/ \/

PRECEDE
CAN PRE-CEDE

WEAKNESS

ACCESSAND

OUT-OF BOUNDS ACCESSAND OUT- . .
Rsﬁgi“:ﬁua‘ Oi;‘;%?;f:‘gf CheCkIng Size
: of Input
FAILURETO CONSTRAIN ith h ; 'l) 121 - Stack \/ _\/ ,\/ ,\/ \/
o;gmglgogixggg&me CWE-120: “Copy without Che flnput (Classic OVerﬂOW
#119
122 - Hea
y: The program copies an input to an output Overflow P \/ \/ \/ \/ \/
RESOURCE/LOCATION . e o o . o
without verifying that the siz¢ of the input is less 123 - Write-
IMPROPER-ACCESS-OF- STACK-BASED
than the size of the output adingto a ' what-where ~ N ~ N N
Extended Description: A condition exists when Condition
T (POINTER #466
INTEGER #129 a program attempts to put mor¢ data in a than it can 124 - Buffer \/ \/ \/ \/ \/
SEELRS W p— NOEXABIE hRld, or when a program attempts to put data in a Underwrite
ART.OF e aries of a 1595 - Gl
Common C often can be used to SRR RG] \/ \/ \/ \/ \/
CAN PRECEDE m— e arbitrary code. generally lead to
CONSEQUENCES UNCONTROLLED
MEMORY crashes. 126 - Buffer \/ \/ \/ \/ \/
ALLOCATION
WRITE-WHAT-WHERE #789 Overread
COV\;[l)IZTaloN INFORMATION
127 Bufter v v v A

47

Have Problems

Software Fault Patterns (SFP):
v’ are an excellent advance
v “factor” weaknesses into parameters,
v' But:
« do not include upstream causes or consequences, and
- are based solely on CWEs.
> SFPs do not tie fault clusters to:
— causes or chains of fault patterns
— consequences of a particular vulnerability.

> Since SFP were derived from CWEs, more work is needed for embedded or mobile concerns, such as,
battery drain, physical sensors (e.g. Global Positioning System (GPS) location, gyroscope, microphone,
camera) and wireless communications.

Note: SFP is coupled with a meta-language, Semantics of Business Vocabularies and Rules (SBVR), in
which causes, threats, consequences, etc. may be expressed. However, SFP does not have an integrated
means of expressing them. 48

| Also Have Problems

Semantic Templates (ST):

v' Collect CWEs into four general areas:
- Software-fault
- Weakness
« Resource/Location
+ Consequences.

v’ But:
 are guides to aid human comprehension.

e The other existing bug descriptions also have their own limitations.

e They are based on CWEs and don't go beyond CWEs.

49

= Need for Structured, Precise,
Orthogonal Approach

50

» Without accurate and precise classification and comprehension of all possible types of
software bugs, the development of reliable software will remain extremely challenging.

» As a result the newly delivered and the legacy systems will continue having security holes
despite all the patching to correct errant behavior.

We don’t (yet) know the best structure for bugs descriptions.

But, for analogies on what we are embarking on, let’s look at
some well-know organizational structures in science ...

51

la

D

—rt

e

Greeks used the terms element and atom.

Aristotle; substances are a mix of Earth, Fire, Air, or Water.

Alchemists cataloged substances, such as alcohol, sulfur, mercury, and salt.
(note: Lavoisier had light and caloric on his 33 elements list!)

hers to Describe Molecules

(Source: Reich Chemistry)

Periodic table reflects atomic structure & forecasts properties of missing elements.

.I(nownin antiquity

l:l akw Mendeleev published his periodic table (1869)
|:| akw Deming published his periodic table (1923)

1 2
H He
3 4 9 (10
Li | Be F | Ne
11 |12 17 | 18
Na | Mg Cl | Ar
19 | 20 | 21 | 22 | 23 | 24 28 34| 35| 36
K |Ca|Sc|Ti V | Cr i Se | Br | Kr
37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 52 | 53| 54
Rb|Sr | Y | Zr [Nb|[Mo | Tc | Ru| Rh Te | | | Xe
55|56 | 57 (72|73 |74 |75 | 76 | 77 84 | 85 | 86
Cs |Ba |-71| Hf [Ta | W | Re | Os | Ir i | Po| At [Rn
87 | 88 | 89 [104|105|106|107| 108| 109|110 | 111 112|113 | 114 [115| 116 [117|118
Fr | Ra |-103| Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn |Uut| FI [Uup| Lv | Uus| Uuo

57 |58 | 59|60 | 61|62 |63 64| 65|66| 67| 68|69 |70 | 71

la |[Ce | Pr [Nd|[Pm|Sm|Fu |Gd | Tb | Dy | Ho| Er | Tm | Yb | Lu

89 |90 | 91|92 | 93 |94 (95 |96 | 97 | 98 | 99 | 100| 101|102 | 103

Ac [Th [Pa [U | Np| Pu |Am[Cm | Bk | Cf | Es | Fm| Md| No | Lr

|:| akw Seaborg published his periodic table (1945)
|:| also known when (akw) Levaoisier published his list of elements (1789) |:| also known (ak) up to 2000

[[akto2012

Hz

Jl,l Hz CygH N0
C):H
N #

(%) 1, 2, 3, 9-tetrahydro-9-methyl-3-[(2-methyl- 1H-
imidazol-1-ylymethyl]-4H-carbazol-4-one

Y
N

Zofran ODT has a chemical formula (C,gH,N50),
structural formula (picture), and a detailed name.

(Source: Wikimedia Commons) 52

https://commons.wikimedia.org/w/index.php?curid=31017351
http://reich-chemistry.wikispaces.com/Ancient%20Time%20LG

Discoveries of more than 1,000 new types of
Bacteria and Archaea over the past 15 years
have dramatically rejiggered the Tree of Life to
account for these microscopic life forms.

e Divides life into three domains:
v' Bacteria
v' Archaea
v Eukaryotes.

e Clearly shows "life we see around us — plants,
animals, humans” and other Eukaryotes -
represent a tiny percentage of world’s biodiversity.

Methanopyri TACK
. .] Arc h aea Merhan:xo«/ Excavata
Fig. The Tree of Life (Source: Berkeley) ffﬁ;‘&%’:‘if", Thaumarchacota Archaeplastida
Thermopidenang Chromalveolata
Archaeoglobi

Tenericutes
Nomurabacteriae @ Kaiserbacteria

Bacteria
® Adlerbacteria

Chloroflexi ® Campbellbacteria
Firmicutes

Actinobacteria Armatimonadetes,

Zixibacteria Atribacteria
Cloacimonetes Aquificae
5 Fil {;wes Calesc
emmatimonadetes Caldiserica
WOR-3 Dictyoglomi
. TAO6 Thermotogae
Poribacteria Deinococcus-Therm.
latexlbagsg? Synergistetes

Fusobacternia,

Marinimicrobi

Bacteroidetes '9naviba
Chlorobi

Cyanobacteria

Giovannonibacteria
° ° \Alolfcbaaena

@ Melainabacteria Jorgensenbacteria

o RBX)

e Azambacteria pareybacteria

@ Yanofskybacteria
® Moranbacteria

PVC
superphylum

Planctomycetes
Chlamydiae, . .
Lentisphaerae, @ Magasanikbacteria

Verrucomicrobia » RN V / : sUhrbacerix Candidate

Omnitrophica ® o= Phyla Radiation

@ Peregrinibacteria
® Gracilibacteria BD1-5, GNO2
® Absconditabacteria SR1
Saccharibacteria
® Berkelbacteria

Elusimicrobia

O
Delt tebay
st
iogene!
Hyd! enege!e”ibﬁﬁree‘:’y%‘ =
rogenedentes i
Spirochaetes ® N .wbggtsg’tl;gclena
s NN 0o Mo
oo ° Pacebacteria
N\ .. o Beckwghbac_(ena
; : \ oizmanbacteria
Dojkabacteria WS6 Gottesmanbacteria
CPElase o\o“"ﬁ‘m"" Microgenomates
/ aviesbacteria
Katanobacteria Cgrtissbacteria 9

WWE3

™6 @
Epsilonproteobacteria

Alphaproteobacteria

Acidithiobacillia

Betaproteobacteri oY P . P
S Major lineages with isolated representative - italics

Major lineage lacking isolated representative - @
0.4

Gammaproteobacteria

Micrarchaeota ®
Diapherotrites

Nanohaloarchaeota 'l
Aenigmarchaeota @
arvarchaeota

DPANN

Pacearchacota @ ®
Nanoarchaeota
Woesearchaeota :

Altiarchaeales Halobacteria
Z7ME43

Methanomicrobia Amoebozoa

http://www.nature.com/articles/nmicrobiol201648

ographic Coordinate

<4

System

Specify Any Terrestrial Location using Latitude, Longitude, and Elevation.

Latitude
{(MNorth /South)
Q0
45
|:|D
455
goes
Latitude waries from O°
at the equator to J0°
Morth and South at the
poles

Specify. !.-"

Latitude
Equatar

Longitude
(West/East)

Longitude waries
from 0 at
zreenwich To 180°
East and West

Elevation Histogram of the Earth’s Crust

elevation
in meters

8,000

6,000

 highest known permanent settlement; La Rinconada, southern Pery (5100 m / 16,728 fit}
(& mining town with a population of around 7,000)

—

4,000

2,000

Sea Level

=2,000

4,000

6,000

-8,000

-10,000

each tick-mark represents 10% of the surface of the earth

Geographic Coordinate System (Source: \Wikipedia) (about 51,006,560 km?)

54

http://en.wikipedia.org/wiki/Geographic_coordinate_system

Figure 2: Computed tomography of a comatose patient with a
left temporal epldural haematoma, right parenchymal temporal
lobe haematoma, and a right convexity subdural haematoma
before and after cranlotomy and evacuation of haematomas

The caption uses precise medical terminology.
They are not trying to obfuscate.

They are "painting a picture" (adding arrows and
circles) with words.

So, just as a doctor would be hampered by only
being able to say, “this thingy here”, software
assurance work is more difficult, because of the lack
of a precise common vocabulary (ontology).

(Source: http://i.stack.imgur.com/uLH9P.jpg)

55

http://i.stack.imgur.com/uLH9P.jpg

Irena.Bojanova@nist.gov
https://samate.nist.gov/BF/

e Details on the developed so far BF classes = in the next presentation in a moment.

56

	Slide 1: The Bugs Framework (BF) – Introduction BF – software Developers’ and Testers’ “Best Friend.”
	Slide 2: Know Your Weaknesses
	Slide 3: Objective and Need
	Slide 4: Outline
	Slide 5
	Slide 6: Bugs Terminology
	Slide 7: Bugs Terminology (Cont.)
	Slide 8
	Slide 9
	Slide 10: BF Taxonomy
	Slide 11: BF Class Graph
	Slide 12
	Slide 13
	Slide 14: BF: Buffer Overflow (BOF)
	Slide 15: BOF: Causes, Attributes, and Consequences
	Slide 16: BOF: Example – CVE-2014-0160 (Heartbleed)
	Slide 17: BF Descriptions of BOF Related CWEs
	Slide 18: BOF – # of Possible Weaknesses
	Slide 19
	Slide 20: BF: Information Exposure Model
	Slide 21: BF: Information Exposure (IEX)
	Slide 22: IEX: Causes, Attributes, and Consequences
	Slide 23: IEX: Example – CVE-2017-5754 (Meltdown)
	Slide 24: BF Methodology
	Slide 25
	Slide 26: Repositories of Bugs, Vulnerabilities, and Attacks
	Slide 27: Common Weakness Enumeration (CWE)
	Slide 28: Use of CWE
	Slide 29: Software Fault Patterns (SFP)
	Slide 30: Software Fault Patterns (SFP)
	Slide 31: Semantic Templates (ST)
	Slide 32: ST
	Slide 33: Other Repositories/Classifications
	Slide 34: Common Vulnerabilities and Exposures (CVE) Common Attack Pattern Enumeration and Classification (CAPEC)
	Slide 35
	Slide 36: Problems With Current Bug Descriptions
	Slide 37: CWE – the Best, but also …
	Slide 38: CWE – Imprecise Definitions
	Slide 39: CWE – Imprecise Definitions
	Slide 40: CWEs – Overlaps or Gaps in Coverage
	Slide 41: CWEs – Overlaps or Gaps in Coverage
	Slide 42: CWE – Gaps –> Use of Approximate CWE
	Slide 43: CWEs – Too Detailed
	Slide 44: CWEs – Not Always Easy to Find
	Slide 45: Software Fault Patterns (SFP) – Improve on CWEs
	Slide 46: Semantic Templates (ST) – Improve on CWEs, too
	Slide 47: Semantic Templates (STs) – Improve on CWEs, too
	Slide 48: But SFP & ST Also Have Problems
	Slide 49: But SFP & ST Also Have Problems
	Slide 50
	Slide 51
	Slide 52: Periodic Table & Others to Describe Molecules
	Slide 53: Tree of Life
	Slide 54: Geographic Coordinate System
	Slide 55: Precise Medical Language
	Slide 56: Questions  Next

