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Introduction



● Software Bug:
○ A coding error
○ Needs to be fixed

● Software Weakness:
o Caused by a bug or ill-formed data
o Weakness Type – a meaningful notion!

● Software Vulnerability: 
○ An instance of a weakness type that leads to a security failure
o May have several underlying weaknesses

● Security failure:
o A violation of a system security requirement

Terminology

The Bugs Framework (BF)
https://samate.nist.gov/BF

https://samate.nist.gov/BF


“BadAlloc” Pattern – 25 CVEs
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Existing Repositories 



● Weaknesses:

CWE – Common Weakness Enumeration

● Vulnerabilities:

CVE – Common Vulnerabilities and Exposures

→over 18 000 documented in 2020

● Vulnerabilities by priority for remediation – CVEs:

KEV – Known Exploited Vulnerabilities Catalog

● Linking weaknesses to vulnerabilities – CWEs to CVEs 
NVD – National Vulnerabilities Database
→ links also to KEV

Commonly Used Repositories

https://cwe.mitre.org/ 

https://cve.mitre.org/ 

https://www.cisa.gov/known-
exploited-vulnerabilities-catalog 

https://nvd.nist.gov/ 

https://cwe.mitre.org/
https://cve.mitre.org/
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://nvd.nist.gov/
https://cwe.mitre.org/
https://cve.mitre.org/
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://nvd.nist.gov/


1. Imprecise Descriptions – CWE & CVE

2. Unclear Causality – CWE & CVE

3. No Tracking Methodology – CVE

4. Gaps in Coverage – CWE

5. Overlaps in Coverage – CWE

6. No Tools – CWE & CVE

Repository Problems



● Example:

CWE-502: Deserialization of Untrusted Data: 

The application deserializes untrusted data without 
sufficiently verifying that the resulting data will be valid.

o Unclear what “sufficiently” means,

o “verifying that data is valid” is also confusing

Problem #1: Imprecise Descriptions



● Example: 

CVE-2018-5907 
Possible buffer overflow in msm_adsp_stream_callback_put due to lack of input 
validation of user-provided data that leads to integer overflow in all Android releases 
(Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the Linux kernel. 

→ the NVD label is CWE-190

While the CWEs chain is: 
CWE-20 → CWE-190 → CWE-119

Problems #2, #3: Unclear Causality, Tracking

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5907
http://cwe.mitre.org/data/definitions/190.html


● Example:

CWEs coverage of buffer overflow by: 

✓ Read/ Write

✓ Over/ Under

✓ Stack/ Heap

Problems #4, #5: Gaps/Overlaps in Coverage 

Over Under Either End Stack Heap
Read CWE-127 CWE-126 CWE-125

Write CWE-124 CWE-120
CWE-123 
CWE-787

CWE-121 CWE-122

Read/ Write CWE-786 CWE-788



The Bugs Framework 
(BF)



1. Solve the problems of imprecise descriptions and unclear causality

2. Solve the problems of gaps and overlaps in coverage

BF Goals

…



● BF describes a bug/weakness as:
○ An improper state

and
○ Its transition

● Improper State – 

a tuple(operation, operand1, ... , operandn)

, where at least one element is improper

● Transition – 

the result of the operation over the operands

Improper 
State 2

Improper 
State 2:

(operation 2,  
operand 21, ... 

operand 2i, 
...)

BF Features – Clear Causal Descriptions

Improper 
State 1

results in 
Improper 
operand 2i

Improper 
State 1

(operation 1 
operand 11 ... 

operand 1i 
...)

Improper 
State n

…

Intermediate State – caused by ill-formed data
– at least one operand is improper 

Initial State – caused by the Bug 
– the operation is improper

Failure

Final State –  the Failure 
– caused by a final error

Final 
Error



● BF describes a vulnerability as: 
○ A chain of improper states and their transitions
○ States change until a failure is reached

Improper 
State 2

(operation 2 
operand 2j 

...)

BF Features – Chaining Weaknesses

Improper 
State 1

(operation 1 
operand 11 ... 

operand 1i 
...)

…

Improper 
operand np

Improper 
operand 2j

Improper 
State n

(operation n
…

operand np 
...)

Improper 
operand 3k

Failure

Final 
Error

Intermediate State – caused by ill-formed data
– at least one operand is improper 

Initial State – caused by the Bug 
– the operation is improper

Final State –  the Failure 
– caused by a final error



● How to find the Bug?
● Go backwards by operand until an operation is a cause

Improper 
State 2

(operation 2 
operand 2j 

...)

BF Features – Backtracking

Improper 
State 1

(operation 1 
operand 11 ... 

operand 1i 
...)

…

Improper 
operand np

Improper 
operand 2j

Improper 
State n

(operation n
…

operand np 
...)

Improper 
operand 3k

Failure

Final 
Error

Intermediate State – caused by ill-formed data
– at least one operand is improper 

Initial State – caused by the Bug 
– the operation is improper

Final State –  the Failure 
– caused by a final error



BF Features – Converging Vulnerabilities

Improper 
State 1

(operation 1 
operand 11 ... 

operand 1i 
...)

…

Improper 
operand 2i

Improper 
State q’

(operation q’
…

operand q’k
...)

…

Improper 
State n

(operation n
operand np ...
operand nm

...)

Final 
Error’

Improper 
operand np

Failure

Final 
Error

Final 
Error

Intermediate State – caused by ill-formed data
– at least one operand is improper 

Initial State – caused by the Bug 
– the operation is improper

Final State –  the Failure 
– caused by a final error

Improper 
State 1’

(operation 1’ 
operand 1’1 ... 
operand 1’i 

...)

Improper 
operand 2’i

Improper 
operand q’k



● BF Class – a taxonomic category of a weakness type, defined by: 
○ A set of operations 
○ All valid cause → consequence relations
○ A set of attributes

BF Features – Classification

● BF bug/weakness description – 
instance of a BF class with: 
○ one cause
○ one operation
○ one consequence
○ and their attributes

● BF vulnerability description – 
○ chain of BF classes instances 
○ consequence–cause transitions.

Improper 
State 2

(operation 2 
operand 2j 

...)

Improper 
State 1

(operation 1 
operand 11 ... 

operand 1i 
...)

Consequence from State 2j 
Cause for the Failure

Final Error

Consequence from State 1
Cause for State 2

 Improper Operand 2j

Cause for State 1
 Improper operation 1

Failure



BF Taxonomy



BF – Bugs Models

  S ( b ect 

   ( wner 

   ( b ect 

   ( b ect 

 ead

 ther  b ect 
  NU  

 b ect 
 ife me

 b ect
 pace

E tend

ass ign   
pos i on

 ni ali e

 rst wri te

 eassign

 educe

 eallocate

Deallocate

  ,   , etc 

Allocate

 eposi on

las t wri te

Clear
Write ni ali e

Dereference

Upper
Bound

 ower
Bound

Create
 b ect  b ect

 n Use

Destroy

 b ect

 eallocate

 b ect
 i e

   

Validate

 ani  e

   

Verify

Correct

Unchec ed 
Data

Chec ed 
Data

Data
 i fe me

   

Declare

De ne

  S

 efer

Call

   

Cast

Coerce

   

Calculate

Evaluate

ob ect

func on

argument return (   
ob ect

type 
namespace

subtype
ob ect

argument

 ype  ystem  imeline

argument return (  
ob ect

BF Input/Output Bugs Model BF Data Type Bugs Model Memory Bugs Model

● Identify  Secure Code Principles:
o Input/Output Safety
o Data Type Safety
o Memory Safety 



namespace

NRS

BF Data Type Bugs Model

● Four  phases,  corresponding  to  
the BF Data Type Bugs classes:
DCL, NRS, TCV, and TCM 
 

● Data Type  operations  flow

DCL

Declare

Define

Refer

Call

TCV

Cast

Coerce

TCM

Calculate

Evaluate

object

function

argument/return/(.)
object

type/
namespace

subtype 
object                                                

argument
object

Type System Timeline

argument/return/(.)
object

type/
  

➢ Entity: 
o Object
o Function 
o Data Type
o Namespace



BF Memory Bugs Model

● The BF Memory Bugs Model:
○ Four  phases,  corresponding  to  

the BF memory bugs classes:
MAD,  MAL,  MUS,  MDL

○ Memory  operations  flow
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● BF class:
o Set of Operations
o Set of Causes
o Set of Consequences

BF – Clusters of Bugs Classes

● Input/Output Bugs: 
 DVL, DVR

● Data Type Bugs: 
 DCL, NRS, TVC, TCM
● Memory Bugs: 
 MAD, MAL, MUS, MD
● Cryptography Bugs:
 ENC, VRF, KMN
● Random Numbers Generation  Bugs: 
 RND, PRN
● Access Control Bugs: 
 ATN, AUT
● Control Flow Bugs: ...
● Concurrency Bugs: ...

https://samate.nist.gov/BF/ 

https://samate.nist.gov/BF/
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BF Classes – MAD & MUS
Memory Addressing Bugs (MAD) – The pointer to
 an object is initialized, repositioned, or reassigned to 
an improper memory address.

Memory Use Bugs (MUS) – An object is initialized, read, written, 
or cleared improperly.

https://samate.nist.gov/BF/
Classes/_MEM/MAD.html 

https://samate.nist.gov/BF/Classes/_MEM/MUS.html 



BF Classes – DVL & DVR

Data Verification Bugs (DVR) – Data are verified
 (semantics check) or corrected (assign value, remove) improperly.

Data Validation Bugs (DVL) – Data are validated 
(syntax check) or sanitized (escape, filter, repair) improperly.
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BF Classes – NRS, TCV, TCM
Name Resolution Bugs (NRS) – The name of an 
object, a function, or a data type is resolved improperly 
or bound to an improper data type or implementation.
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Type Conversion Bugs (TCV) – 
A data value is cast or coerced into another 
data type improperly.

Type Computation Bugs (TCM) – An arithmetic 
expression (over numbers, strings, or pointers) is 
calculated improperly, or a boolean condition is 
evaluated improperly. 

https://samate.nist.gov/BF/Classes/_DTC/NRS.html 

https://samate.nist.gov/BF/Classes/_DTC/TCM.html 

https://samate.nist.gov/BF/Classes/_DTC/TCV.html 



BF Early Work – Buffer Overflow



Validation towards CWE



BF Class Related CWEs

● BF Data Type Bugs Classes – 78 CWEs: 
o 50% Declaration/Definition Operation
o 33.3% Cast/Coerce Operation
➢ 16% Access Error
➢ 0.6% Type Compute Error

● BF Input/Output Bugs Classes – 161 CWEs: 
o 80.7% – Input Validation Operation
➢ 68.3% – Injection Error

● BF Memory Bugs Classes 52 CWEs: 
o 61.5% Initialize, Dereference, 

 Read, Write, Clear Operations
➢ 67.3% Memory Error

BF: https://samate.nist.gov/BF/ 
CWE: https://cwe.mitre.org/ 

● Identify  CWEs:
1. CWE Filtering
2. Automated Extraction
3. Manual Review

https://samate.nist.gov/BF/
https://cwe.mitre.org/
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CWEs by BF Consequence
● Input/Output CWEs (incl. Injection) – 

mapped by BF DVL and BF DVR consequences
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BF – Defined 

● B  is a …

➢ Structured 

➢ Complete 

➢ Orthogonal 

➢ Language Independent

Classification System of software bugs and weaknesses. 



BF Hands On: 
BIG-IP TMUI RCE 



CVE-2020-5902 In BIG-IP versions 15.0.0-15.1.0.3, 14.1.0-14.1.2.5, 13.1.0-13.1.3.3, 12.1.0-12.1.5.1, 
and 11.6.1-11.6.5.1, the Traffic Management User Interface (TMUI), also referred to as the 
Configuration utility, has a Remote Code Execution (RCE) vulnerability in undisclosed pages. 

● Vulnerability in BIG-IP TMUI login interface 
https://[F5 Host]/tmui/login.jsp/

● Proof-Of-Concept: TMSH command execution
https://[F5 Host]/tmui/login.jsp/..;/tmui/locallb/workspace/tmshCmd.jsp

Remote Code 
Execution

BIG-IP TMUI RCE (CVE-2020-5902)

../

DVL
(Validate: 
Missing, 

Data (URL), 
Policy)

File Injection 
(Relative Path Traversal)

The Failure – caused by final error(s)Caused by the Bug 

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5902


BF Description of BIG-IP TMUI RCE

Attributes
Mechanism:
• Format (e.g., via 
“.*\.\.;.*“ 
regular expression)

Source Code: 
• Codebase 

(login.jsp)

Execution Space:
• Admin

Data State:
• Transferred
(via network)

ConsequenceCause

Improper Operation:
Missing

Injection Error:
File Injection

(Relative Path Traversal)

DVL Operation

Validate

Remote Code 
Execution

The Bug

The Failure



BF Hands On: 
Bad Alloc



“BadAlloc” Pattern – 25 CVEs
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Weakness

Memory Addressing 
Weakness

Memory Use 
Weakness

Failure



CVE-2021-21834 An exploitable integer overflow vulnerability exists within the MPEG-4 decoding functionality of the GPAC 
Project on Advanced Content library v1.0.1. A specially crafted MPEG-4 input when decoding the atom for the 
&#8220;co64&#8221; FOURCC can cause an integer overflow due to unchecked arithmetic resulting in a heap-based buffer 
overflow that causes memory corruption. An attacker can convince a user to open a video to trigger this vulnerability.

“BadAlloc”(CVE-2021-21834)

41  GF_Err co64_box_read(GF_Box* s, GF_BitStream* bs)

42  {

43    u32 entries;

44   GF_ChunkLargeOffsetBox* ptr = (GF_ChunkLargeOffsetBox*)s;

45   ptr->nb_entries = gf_bs_read_u32(bs);

46

47  ISOM_DECREASE_SIZE(ptr, 4)

48

49  if (ptr->nb_entries > ptr->size / 8) {

50   GF_LOG(GF_LOG_ERROR, GF_LOG_CONTAINER, 

    ("[iso file] Invalid number of entries %d in co64\n", 

     ptr->nb_entries));

51   return GF_ISOM_INVALID_FILE;

52   }

53 

54   ptr->offsets = (u64*)gf_malloc(ptr->nb_entries * sizeof(u64));

55   if (ptr->offsets == NULL) return GF_OUT_OF_MEM;

56    ptr->alloc_size = ptr->nb_entries;

57    for (entries = 0; entries < ptr->nb_entries; entries++) {

58     ptr->offsets[entries] = gf_bs_read_u64(bs);

59  }

60   return GF_OK;

61  }

DVR
(Missing Verify, 

Data Value 
(number of 

entries), Policy) TCM
(Calculate, 
Data Value: 

Wrong 
Argument Value, 

Data Type, 
Function)

Inconsistent 
Value

Over Bounds 
Pointer

MUS
(Write, 

Object Address: 
Over Bounds, 
Object Size) 

DoS  
/ 

RCE

Buffer 
Overflow

MAL
(Allocate, 

Object Address: 
Over Bounds, 
Object Size) 

MAD
(Reposition, 

Object Address,
Object Size: 
Not Enough 
Allocated) 

Caused by ill-formed data

Caused by the Bug

The Failure – caused by final error(s)

Wrap 
Around

Not Enough 
Allocated

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21834


41  GF_Err co64_box_read(GF_Box* s, GF_BitStream* bs)

42  {

43    u32 entries;

44   GF_ChunkLargeOffsetBox* ptr = (GF_ChunkLargeOffsetBox*)s;

45   ptr->nb_entries = gf_bs_read_u32(bs);

46

47  ISOM_DECREASE_SIZE(ptr, 4)

48

49  

50   GF_LOG(GF_LOG_ERROR, GF_LOG_CONTAINER, 

    ("[iso file] Invalid number of entries %d in co64\n", 

     ptr->nb_entries));

51   return GF_ISOM_INVALID_FILE;

52   }

53 

54   ptr->offsets = (u64*)gf_malloc(ptr->nb_entries * sizeof(u64));

55   if (ptr->offsets == NULL) return GF_OUT_OF_MEM;

56    ptr->alloc_size = ptr->nb_entries;

57    for (entries = 0; entries < ptr->nb_entries; entries++) {

58     ptr->offsets[entries] = gf_bs_read_u64(bs);

59  }

60   return GF_OK;

61  }

Wrap 
Around

Over Bounds 
Pointer

Buffer 
Overflow

Not Enough 
Allocated

Inconsistent 
Value

DVR
(Missing Verify, 

Data Value 
(number of 

entries), Policy)
TCM

(Calculate, Data 
Value: Wrong 

Argument Value, 
Data Type, 
Function)

MUS
(Write, 

Object Address: 
Over Bounds, 
Object Size) 

DoS  
/ 

RCE

MAL
(Allocate, 

Object Address: 
Over Bounds, 
Object Size) 

MAD
(Reposition, 

Object Address,
Object Size: 
Not Enough 
Allocated) 

if ((u64)ptr->nb_entries > ptr->size / 8 

    ||   (u64)ptr->nb_entries > (u64)SIZE_MAX/sizeof(u64)){

CVE-2021-21834 An exploitable integer overflow vulnerability exists within the MPEG-4 decoding functionality of the GPAC 
Project on Advanced Content library v1.0.1. A specially crafted MPEG-4 input when decoding the atom for the 
&#8220;co64&#8221; FOURCC can cause an integer overflow due to unchecked arithmetic resulting in a heap-based buffer 
overflow that causes memory corruption. An attacker can convince a user to open a video to trigger this vulnerability.

“BadAlloc” – the Fix

Caused by ill-formed data

Caused by the Bug

The Failure – caused by final error(s)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21834


B  Description of “BadAlloc”

Attributes

Mechanism:
• Range

Source Code: 
• Third Party (Library 

box_code_base.c)

Execution Space:
• Local

Data State:
•  tored (“number of 

entries” read from file 

ConsequenceCause

Improper Operation:
Missing

Improper Data Value:
Inconsistent Value 

( > max 64-bit int )

DVR Operation

Verify
( (u64)ptr->nb_entries > 

(u64)SIZE_MAX/sizeof(u64) ) 

Mechanism:
• Operator 

(Arithmetic: ‘*’)

Source Code: 
• Third Party ( Library 

box_code_base.c )

Data Value Kind:
• Numeric

Data Type Kind: 
• Structured

ConsequenceCause

Improper Data Value:
Wrong Argument Value 

Improper Data Value: 
Wrap Around

TCM Operation

Calculate 

( ptr->nb_entries*sizeof(u64) )

Attributes

Attributes

Mechanism:
• Explicit

Source Code: 
• Third Party (Library 

box_code_base.c )

Execution Space:
• Userland

Ownership: 
• Single

Location:
• Heap

ConsequenceCause

Improper Data Value: 
Wrong Size Used

(Size of memory to allocate)

Improper Object Size:
Not Enough Memory Allocated

MAL Operation

Allocate 
( gf_malloc())

Attributes

Mechanism:
• Sequential

Source Code: 
• Third Party ( Library 

box_code_base.c )

Execution Space:
• Userland

Location:
• Heap

ConsequenceCause

Improper Object Size:
Not Enough Memory Allocated

Improper Data Value: 
Over Bounds Pointer

MAD Operation

Reposition

Attributes

Mechanism:
• Sequential

Source Code: 
• Third Party (Library 

box_code_base.c )

Execution Space:
• Userland

Span:
• Huge

Location:
• Heap

ConsequenceCause

Improper Data Value:
Over Bounds Pointer

Memory Error:
Buffer Overflow

MUS Operation

Write

Denial of Service 
/

Remote Code 
Execution



BF Hands On: 
Incorrect Pointer Scaling



Wrong 
Type

CWE-468, Example 1: This example attempts to calculate the position of the second byte of a pointer.

Example Language: C
         
int *p = x;

char * second_char = (char *)(p + 1);

TCV
(Wrong Cast, 

Data Value, Data 
Type)

NRS
(Call, Data Type, 

Wrong 
Argument Type, 

Function)

MUS
(Read, 

Object Address: 
Over Bounds, 
Object Size) 

Buffer 
Overflow

TCM
(Calculate,
Data Type,
Data Value, 

Wrong 
Overloaded 
Function) 

MAD
(Reposition, 

Object Address,
Wrong Index) 

Wrong 
Overloaded 

Function

Wrong  
Result

Incorrect Pointer Scaling (CWE-468, Ex. 1 )

Caused by ill-formed data

Caused by the Bug

Byte 1 Byte 2 Byte 3 Byte 4

p + 1p

second_char 

moving 4 bytes

Over Bounds 
Pointer

https://cwe.mitre.org/data/definitions/468.html


CWE-468 Example 1

This example attempts to calculate the position of the second byte of a pointer.

Example Language: C
         
int *p = x;

        (char *)(p + 1) 

char * second_char = (char *)p + 1;

Incorrect Pointer Scaling – the Fix

Byte 1 Byte 2 Byte 3 Byte 4

(char *)p + 1p

second_char 

Wrong 
Type

TCV
(Wrong Cast, 

Data Value, Data 
Type)

NRS
(Call, Data Type, 

Wrong 
Argument Type, 

Function)

MUS
(Read, 

Object Address: 
Over Bounds, 
Object Size) 

Buffer 
Overflow

TCM
(Calculate,
Data Type,
Data Value, 

Wrong 
Overloaded 
Function) 

MAD
(Reposition, 

Object Address,
Wrong Index) 

Wrong 
Overloaded 

Function

Wrong  
Result

Caused by ill-formed data

Caused by the Bug

Over Bounds 
Pointer

https://cwe.mitre.org/data/definitions/468.html


Mechanism:
• Pass In

Source Code: 
• Codebase

Data Value Kind:
• Pointer

Data Type Kind: 
• Primitive

BF Description of CWE-468, Example 1

Mechanism:
• Ad-hoc Bind

Source Code: 
• Codebase

Entity: 
• Function

Data Type Kind: 
• Primitive

ConsequenceCause

Improper Data Type :
Wrong Argument Type

Improper Function: 
Wrong Overloaded Function

( +(int*,int) instead of  +(char*,int) ) 

NRS Operation

Call 
( + operator )

Attributes

Attributes

ConsequenceCause

Improper Function: 
Wrong Overloaded Function 

Improper Data Value:
Wrong Result 

( Pointer Position )

TCM Operation

Calculate

Attributes

Mechanism:
• Direct

Source Code: 
• Codebase

Execution Space:
• Userland

Object Location:
• Stack

ConsequenceCause

Improper Data Value:
Wrong Index

Improper Address: 
Over Bounds Pointer

MAD Operation

Reposition

Attributes
Mechanism:
• Direct

Source Code: 
• Codebase

Execution Space:
• Userland

Pointer Span:
• Little

Object Location:
• Stack

ConsequenceCause

Improper Object Address:
Over Bounds Pointer

Memory Error:
Buffer Overflow

MUS Operation

Read

ConsequenceCause

Improper Operation:
Wrong

Improper Data Type: 
Wrong Type 

( int instead of char )

TCV Operation

Cast 
( (char *)(p + 1) instead of 

(char *)p + 1 )

Attributes

Mechanism:
• Operator

Source Code: 
• Codebase

Data Value Kind:
• Pointer

Data Type Kind: 
• Primitive

int *p = x;

char * second_char = (char *)(p + 1);



BF Hands On: 
Heartbleed



CVE-2014-0160 
The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat 
Extension packets, which allows remote attackers to obtain sensitive information from process memory via 
crafted packets that trigger a buffer over-read, as demonstrated by reading private keys, related to 
d1_both.c and t1_lib.c, aka the Heartbleed bug. 

Heartbleed (CVE-2014-0160)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160


CVE-2014-0160 The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat 
Extension packets, which allows remote attackers to obtain sensitive information from process memory via crafted packets that 
trigger a buffer over-read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug. 

Heartbleed (CVE-2014-0160)

1448 dtls1_process_heartbeat(SSL *s)

1449 {

1450 unsigned char *p = &s->s3->rrec.data[0], *pl;

1451 unsigned short hbtype;

1452 unsigned int payload;

1453 unsigned int padding = 16; /* Use minimum padding */

1454

1455 /* Read type and payload length first */

1456 hbtype = *p++;

1457 n2s(p, payload);

1458 pl = p;

...

1465 if (hbtype == TLS1_HB_REQUEST)

1466  {

1467  unsigned char *buffer, *bp;

...

1470  /* Allocate memory for the response, size is 1 byte

1471  * message type, plus 2 bytes payload, plus

1472  * payload, plus padding

1473  */

1474  buffer = OPENSSL_malloc(1 + 2 + payload + padding);

1475  bp = buffer;

1476

1477  /* Enter response type, length and copy payload */

1478  *bp++ = TLS1_HB_RESPONSE;

1479  s2n(payload, bp);

1480  memcpy(bp, pl, payload);

DVR
(Verify: Missing, 

Data Value 
(payload length), 

Policy)

MAD
(Reposition, 

Object Address,
Data Value: 

Wrong Size Used)

Inconsistent 
Value

MUS
(Read, 

Object Address: 
Over Bounds 

Pointer, 
Object Size) 

Over Bounds 
Pointer

/* Naive implementation of memcpy

void *memcpy (void *dst, const void *src, size_t n)

{

    size_t i;

    for (i=0; i<n; i++)

        *(char *) dst++ = *(char *) src++;

    return dst;

}

Buffer 
Overflow

plbp

payload

Caused by ill-formed dataCaused by the Bug 

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160


DVR
(Verify: Missing, 

Data Value 
(payload length), 

Policy)

DVR
(Verify: Missing, 

Data Value 
(payload length), 

Policy)

Inconsistent 
Value

DVR
(Verify: Missing, 

Data Value 
(payload length), 

Policy)

Buffer 
Overflow

Not Cleared
Object

Over 
Bounds

Heartbleed (CVE-2014-0160)

DVR
(Verify: Missing, 

Data Value 
(payload 

length), Policy)

DVR
(Verify: Missing, 

Data Value 
(payload 

length), Policy)

Buffer 
Overflow

Caused by ill-formed data

Caused by the Bug

The Failure – caused by final error(s)



Mechanism:
• Sequential

Source Code: 
• Codebase 

(d1_both.c and tl_lib.c)

Execution Space:
• Userland

Location:
• Heap

Mechanism:
• Quantity

Source Code: 
• Codebase 
(d1_both.c and tl_lib.c)

Execution Space:
• Admin

State:
• Transferred
(via network)

Attributes

Mechanism:
• Sequential

Source Code: 
• Codebase

Execution Space:
• Userland

Span:
• Huge

Location:
• Heap

ConsequenceCause

Improper Operation:
Missing

Memory Error:
Not Cleared Object

MUS Operation

Clear

Attributes

ConsequenceCause

Improper Data Value :
Wrong Size Used

(for  s→s3→rrec.data[0])

Improper Object Address:
Over Bounds Pointer

MAD Operation

Reposition

Attributes
Mechanism:
• Sequential

Source Code: 
• Codebase 
(d1_both.c and tl_lib.c)

Execution 
Space:
• Userland

Span:
• Huge

Location:
• Heap

ConsequenceCause

Memory Error:
Buffer Overflow

MUS Operation

ReadImproper Object Address:
Over Bounds Pointer

(for s→s3→rrec.data[0])

BF Description of Heartbleed

Information 
Exposure

A WeaknessThe Bug The Failure

Attributes

ConsequenceCause

Improper Operation:
Missing

Improper Data Value:
Inconsistent Value
(for payload size)

DVR Operation

Verify



BF Early Work – Heartbleed

Bojanova, I., Black, P., Yesha, Y. and Wu, Y. (2016), The Bugs 
Framework (BF): A Structured Approach to Express Bugs, 

IEEE International Conference on Software Quality, 
Reliability & Security (QRS 2016), Viena, AT,



BF Hands On:
NLP/ML/AI on Failures and Risks



BF Taxonomy – BF.xml



CVE-2014-0160 - Heartbleed.bfcve



Bug/Weakness/Failure



CVE-2014-0160 - Heartbleed.bfcve



CVE-2021-21834 - Bad Alloc.bfcve



CWE mapped to BF – BFCWE.xml 



BF in ML & AI 

Machine readable formats of:
● BF taxonomy
● BF vulnerability descriptions
● CWEs to BF mappings

→Query and analyze sets of BF descriptions
→NLP, ML, and AI projects related to software

bugs/weaknesses, failures and risks.



BF in ML & AI 

● JHU APL – Automated Vulnerability Testing via Executable Attack Graphs:
o Chain vulnerabilities via logical directed graphs 

o Determine most mitigation “paths” with least changes

o Detect user behavior prior to malicious effect

● RIT Secure and Trustworthy Cyberspace (SaTC): 



BF – Potential Impact



● Allow precise communication 
about software bugs and weaknesses

● Help identify exploit mitigation techniques

BF – Potential Impacts

BF

Government

Academia

Industry



Questions



Irena Bojanova: irena.bojanova@nist.gov

Questions

https://samate.nist.gov/BF/
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