
Explainable Vulnerabilities
Descriptions with NIST BF

Keynote – ISSRE, SHIFT & IWSF:
Software Hardware Interaction Faults &
International Workshop on Software Faults

Charlotte, NC, USA (Remote Attendance) – Oct. 31, 2022

Irena Bojanova
https://samate.nist.gov/BF

https://samate.nist.gov/BF

● Introduction:
o Terminology:
✓ Bug
✓ Weakness
✓ Vulnerability
✓ Failure

o “Bad Alloc” Pattern
● Existing Repositories:

o CWE
o CVE
o NVD
o KEV

Agenda

● The Bugs Framework (BF)
o Goals
o Features

● BF Taxonomy

● Validation towards CWE
● BF Hands On:

o BF Descriptions of CVEs
o ML, AI on Failures and Risks

● Potential Impacts

Introduction

● Software Bug:
○ A coding error
○ Needs to be fixed

● Software Weakness:
o Caused by a bug or ill-formed data
o Weakness Type – a meaningful notion!

● Software Vulnerability:
○ An instance of a weakness type that leads to a security failure
o May have several underlying weaknesses

● Security failure:
o A violation of a system security requirement

Terminology

The Bugs Framework (BF)
https://samate.nist.gov/BF

https://samate.nist.gov/BF

“BadAlloc” Pattern – 25 CVEs

DVR

TCM

MUS

DoS
/

RCE

MAL

MAD

Data Verification
Bug

Type Computation
Weakness

Memory Allocation
Weakness

Memory Addressing
Weakness

Memory Use
Weakness

Failure

Existing Repositories

● Weaknesses:

CWE – Common Weakness Enumeration

● Vulnerabilities:

CVE – Common Vulnerabilities and Exposures

→over 18 000 documented in 2020

● Vulnerabilities by priority for remediation – CVEs:

KEV – Known Exploited Vulnerabilities Catalog

● Linking weaknesses to vulnerabilities – CWEs to CVEs
NVD – National Vulnerabilities Database
→ links also to KEV

Commonly Used Repositories

https://cwe.mitre.org/

https://cve.mitre.org/

https://www.cisa.gov/known-
exploited-vulnerabilities-catalog

https://nvd.nist.gov/

https://cwe.mitre.org/
https://cve.mitre.org/
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://nvd.nist.gov/
https://cwe.mitre.org/
https://cve.mitre.org/
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://nvd.nist.gov/

1. Imprecise Descriptions – CWE & CVE

2. Unclear Causality – CWE & CVE

3. No Tracking Methodology – CVE

4. Gaps in Coverage – CWE

5. Overlaps in Coverage – CWE

6. No Tools – CWE & CVE

Repository Problems

● Example:

CWE-502: Deserialization of Untrusted Data:

The application deserializes untrusted data without
sufficiently verifying that the resulting data will be valid.

o Unclear what “sufficiently” means,

o “verifying that data is valid” is also confusing

Problem #1: Imprecise Descriptions

● Example:

CVE-2018-5907
Possible buffer overflow in msm_adsp_stream_callback_put due to lack of input
validation of user-provided data that leads to integer overflow in all Android releases
(Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the Linux kernel.

→ the NVD label is CWE-190

While the CWEs chain is:
CWE-20 → CWE-190 → CWE-119

Problems #2, #3: Unclear Causality, Tracking

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5907
http://cwe.mitre.org/data/definitions/190.html

● Example:

CWEs coverage of buffer overflow by:

✓ Read/ Write

✓ Over/ Under

✓ Stack/ Heap

Problems #4, #5: Gaps/Overlaps in Coverage

Over Under Either End Stack Heap
Read CWE-127 CWE-126 CWE-125

Write CWE-124 CWE-120
CWE-123
CWE-787

CWE-121 CWE-122

Read/ Write CWE-786 CWE-788

The Bugs Framework
(BF)

1. Solve the problems of imprecise descriptions and unclear causality

2. Solve the problems of gaps and overlaps in coverage

BF Goals

…

● BF describes a bug/weakness as:
○ An improper state

and
○ Its transition

● Improper State –

a tuple(operation, operand1, ... , operandn)

, where at least one element is improper

● Transition –

the result of the operation over the operands

Improper
State 2

Improper
State 2:

(operation 2,
operand 21, ...

operand 2i,
...)

BF Features – Clear Causal Descriptions

Improper
State 1

results in
Improper
operand 2i

Improper
State 1

(operation 1
operand 11 ...

operand 1i
...)

Improper
State n

…

Intermediate State – caused by ill-formed data
– at least one operand is improper

Initial State – caused by the Bug
– the operation is improper

Failure

Final State – the Failure
– caused by a final error

Final
Error

● BF describes a vulnerability as:
○ A chain of improper states and their transitions
○ States change until a failure is reached

Improper
State 2

(operation 2
operand 2j

...)

BF Features – Chaining Weaknesses

Improper
State 1

(operation 1
operand 11 ...

operand 1i
...)

…

Improper
operand np

Improper
operand 2j

Improper
State n

(operation n
…

operand np
...)

Improper
operand 3k

Failure

Final
Error

Intermediate State – caused by ill-formed data
– at least one operand is improper

Initial State – caused by the Bug
– the operation is improper

Final State – the Failure
– caused by a final error

● How to find the Bug?
● Go backwards by operand until an operation is a cause

Improper
State 2

(operation 2
operand 2j

...)

BF Features – Backtracking

Improper
State 1

(operation 1
operand 11 ...

operand 1i
...)

…

Improper
operand np

Improper
operand 2j

Improper
State n

(operation n
…

operand np
...)

Improper
operand 3k

Failure

Final
Error

Intermediate State – caused by ill-formed data
– at least one operand is improper

Initial State – caused by the Bug
– the operation is improper

Final State – the Failure
– caused by a final error

BF Features – Converging Vulnerabilities

Improper
State 1

(operation 1
operand 11 ...

operand 1i
...)

…

Improper
operand 2i

Improper
State q’

(operation q’
…

operand q’k
...)

…

Improper
State n

(operation n
operand np ...
operand nm

...)

Final
Error’

Improper
operand np

Failure

Final
Error

Final
Error

Intermediate State – caused by ill-formed data
– at least one operand is improper

Initial State – caused by the Bug
– the operation is improper

Final State – the Failure
– caused by a final error

Improper
State 1’

(operation 1’
operand 1’1 ...
operand 1’i

...)

Improper
operand 2’i

Improper
operand q’k

● BF Class – a taxonomic category of a weakness type, defined by:
○ A set of operations
○ All valid cause → consequence relations
○ A set of attributes

BF Features – Classification

● BF bug/weakness description –
instance of a BF class with:
○ one cause
○ one operation
○ one consequence
○ and their attributes

● BF vulnerability description –
○ chain of BF classes instances
○ consequence–cause transitions.

Improper
State 2

(operation 2
operand 2j

...)

Improper
State 1

(operation 1
operand 11 ...

operand 1i
...)

Consequence from State 2j
Cause for the Failure

Final Error

Consequence from State 1
Cause for State 2

 Improper Operand 2j

Cause for State 1
 Improper operation 1

Failure

BF Taxonomy

BF – Bugs Models

 S (b ect

 (wner

 (b ect

 (b ect

 ead

 ther b ect
 NU

 b ect
 ife me

 b ect
 pace

E tend

ass ign
pos i on

 ni ali e

 rst wri te

 eassign

 educe

 eallocate

Deallocate

 , , etc

Allocate

 eposi on

las t wri te

Clear
Write ni ali e

Dereference

Upper
Bound

 ower
Bound

Create
 b ect b ect

 n Use

Destroy

 b ect

 eallocate

 b ect
 i e

Validate

 ani e

Verify

Correct

Unchec ed
Data

Chec ed
Data

Data
 i fe me

Declare

De ne

 S

 efer

Call

Cast

Coerce

Calculate

Evaluate

ob ect

func on

argument return (
ob ect

type
namespace

subtype
ob ect

argument

 ype ystem imeline

argument return (
ob ect

BF Input/Output Bugs Model BF Data Type Bugs Model Memory Bugs Model

● Identify Secure Code Principles:
o Input/Output Safety
o Data Type Safety
o Memory Safety

namespace

NRS

BF Data Type Bugs Model

● Four phases, corresponding to
the BF Data Type Bugs classes:
DCL, NRS, TCV, and TCM

● Data Type operations flow

DCL

Declare

Define

Refer

Call

TCV

Cast

Coerce

TCM

Calculate

Evaluate

object

function

argument/return/(.)
object

type/
namespace

subtype
object

argument
object

Type System Timeline

argument/return/(.)
object

type/

➢ Entity:
o Object
o Function
o Data Type
o Namespace

BF Memory Bugs Model

● The BF Memory Bugs Model:
○ Four phases, corresponding to

the BF memory bugs classes:
MAD, MAL, MUS, MDL

○ Memory operations flow

 S (b ect

 (wner

 (b ect

 (b ect

 ead

 ther b ect
 NU

 b ect
 ife me

 b ect
 pace

E tend

ass ign
pos i on

 ni ali e

 rst wri te

 eassign

 educe

 eallocate

Deallocate

 , , etc

Allocate

 eposi on

las t wri te

Clear
Write ni ali e

Dereference

Upper
Bound

 ower
Bound

Create
 b ect b ect

 n Use

Destroy

 b ect

 eallocate

 b ect
 i e

● BF class:
o Set of Operations
o Set of Causes
o Set of Consequences

BF – Clusters of Bugs Classes

● Input/Output Bugs:
 DVL, DVR

● Data Type Bugs:
 DCL, NRS, TVC, TCM
● Memory Bugs:
 MAD, MAL, MUS, MD
● Cryptography Bugs:
 ENC, VRF, KMN
● Random Numbers Generation Bugs:
 RND, PRN
● Access Control Bugs:
 ATN, AUT
● Control Flow Bugs: ...
● Concurrency Bugs: ...

https://samate.nist.gov/BF/

https://samate.nist.gov/BF/

 te

 e ata a e
 ardcoded Address
 Wrong nde
 Wrong i e Used

 e e t e
 NU Pointer
 Wild Pointer
 Dangling Pointer
 ver Bounds Pointer
 Under Bounds Pointer
 Wrong Posi on Pointer

 e e a
 issing
 ismatched
 Erroneous

 e a

 ni ali e
 eposi on
 eassign

 eq e e a e

 e e t e
 NU Pointer
 Wild Pointer
 Dangling Pointer
 Untrusted Pointer
 ver Bounds Pointer
 Under Bounds Pointer
 Wrong Posi on Pointer

 e a
 Direct
 equen al

S e e
 Codebase
 hird Party
 tandard ibrary
 Compiler nterpreter

 e S a e
 Userland
 ernel
 Bare etal

 e t a
 tac
 eap

 e ata e
 Wrong nde ype
 Casted Pointer

 e e t S e
 Not Enough emory Allocated

 e ata a e
 orbidden Address

 e ata e
 Casted Pointer

 te

 e e a
 issing
 ismatched
 Erroneous

 e
 Unini ali ed b ect
 Not Cleared b ect
 NU Pointer Dereference
 Untrusted Pointer Dereference
 b ect Corrup on
 ype Confusion
 Use A er ree
 Bu er ver ow
 Bu er Under ow
 Unini ali ed Pointer Dereference

 ni ali e
 Dereference
 ead
 Write
 Clear

 S e a eq e e a e

 e a
 Direct
 equen al

S e e
 Codebase
 hird Party
 tandard ibrary
 Compiler
 nterpreter

 e S a e
 Userland
 ernel
 Bare etal

 te S a
 i le
 oderate
 uge

 e t
 a
 tac
 eap

 e ata a e
 orbidden Address
 Wrong i e Used

 e ata e
 Casted Pointer

 e e t e
 NU Pointer
 Wild Pointer
 Dangling Pointer
 Untrusted Pointer
 ver Bounds Pointer
 Under Bounds Pointer
 Wrong Posi on Pointer

 e e t S e
 Not Enough emory Allocated

BF Classes – MAD & MUS
Memory Addressing Bugs (MAD) – The pointer to
 an object is initialized, repositioned, or reassigned to
an improper memory address.

Memory Use Bugs (MUS) – An object is initialized, read, written,
or cleared improperly.

https://samate.nist.gov/BF/
Classes/_MEM/MAD.html

https://samate.nist.gov/BF/Classes/_MEM/MUS.html

BF Classes – DVL & DVR

Data Verification Bugs (DVR) – Data are verified
 (semantics check) or corrected (assign value, remove) improperly.

Data Validation Bugs (DVL) – Data are validated
(syntax check) or sanitized (escape, filter, repair) improperly.

 e ata
 Corrupted Data
 ampered Data

 e e a
 issing
 Erroneous

 Validate
 ani e

 eq e e a e

 te

 e a

 e ata
 Corrupted Policy
 ampered Policy

 e ata e
 nvalid Data

 e
 uery n ec on
 Command n ec on
 ource Code n ec on
 Parameter n ec on
 ile n ec on

 e a
 afelist
 Denylist
 ormat
 ength

S e e
 Codebase
 hird Party
 tandard ibrary
 Compiler nterpreter

 e
S a e
 ocal
 Admin
 Bare etal

 ata State
 Entered
 tored
 n Use
 ransferred

 e
 Under estric ve Policy
 ver estric ve Policy

 Verify
 Correct

 eq e e a e

 e ata a e
 Wrong Value
 nconsistent Value
 Wrong ype

 te

 e a

 e e a
 issing
 Erroneous

 e ata e
 nvalid Data

 e a
 Value
 uan ty
 ange
 ype
 ther ules

S e e
 Codebase
 hird Party
 tandard ibrary
 Compiler
 nterpreter

 e
S a e
 ocal
 Admin
 Bare etal

 ata State
 Entered
 tored
 n Use
 ransferred

 e
 Under estric ve Policy
 ver estric ve Policy

https://samate.nist.gov/BF/Classes/_INP/DVL.html

https://samate.nist.gov/BF/Classes/_INP/DVR.html

BF Classes – NRS, TCV, TCM
Name Resolution Bugs (NRS) – The name of an
object, a function, or a data type is resolved improperly
or bound to an improper data type or implementation.

 te

 e e a
 Erroneous

 efer
 Call

 e ata a e
 Wrong b ect esolved Value

 e ata e
 Wrong b ect esolved ype
 Wrong ype esolved

 e ata e
 ncomplete ype
 Wrong eneric ype
 Confused ubtype
 Wrong Argument ype

 e
 issing verridden unc on
 issing verloaded unc on

 e a
 esolve
 Bind
 Early Bind
 ate Bind
 Ad hoc Bind

S e e
 Codebase
 hird Party
 tandard ibrary
 Compiler nterpreter

 t
 b ect
 unc on
 Data ype
 Namespace

 ata e
 Primi ve
 tructured

 e S e
 issing uali er
 Wrong uali er

 e
 Wrong unc on esolved
 Wrong eneric unc on Bound
 Wrong verridden unc on Bound
 Wrong verloaded unc on Bound

 eq e e a e S e a

 te

 e ata a e
 Under ange
 ver ange
 lipped ign
 Wrong b ect esolved Value

 e e a
 issing
 Wrong

 Cast
 Coerce

 eq e e a e e a

 e ata a e
 Wrong esult
 runcated Value
 Distorted Value
 ounded Value

 e ata e
 Wrong ype

 e ata e
 Wrong ype
 Wrong b ect esolved ype
 ismatched Argument ype

 e
 issing verloaded unc on

 e a
 Pass n
 Pass ut

S e e
 Codebase
 hird Party
 tandard ibrary
 Compiler nterpreter

 ata a e
 Numeric
 e t
 Pointer
 Boolean

 ata e
 Primi ve
 tructured

 te

 e e a
 Wrong
 Erroneous

 Calculate
 Evaluate

 eq e e a e e a

 e ata a e
 Under ange
 ver ange
 lipped ign
 Wrong esult
 Wrap Around

 e ata e
 Wrong ype
 Wrong b ect esolved ype

 e a
 unc on
 perator
 ethod
 ambda E pression
 Procedure

S e e
 Codebase
 hird Party
 tandard ibrary
 Compiler nterpreter

 ata a e
 Numeric
 e t
 Pointer
 Boolean

 ata e
 Primi ve
 tructured

 e
 Wrong unc on esolved
 Wrong eneric unc on Bound
 Wrong verridden unc on Bound
 Wrong verloaded unc on Bound

 e ta
 Unde ned

 e ata a e
 Wrong Argument Value
 Wrong b ect esolved Value
 eference vs b ect

Type Conversion Bugs (TCV) –
A data value is cast or coerced into another
data type improperly.

Type Computation Bugs (TCM) – An arithmetic
expression (over numbers, strings, or pointers) is
calculated improperly, or a boolean condition is
evaluated improperly.

https://samate.nist.gov/BF/Classes/_DTC/NRS.html

https://samate.nist.gov/BF/Classes/_DTC/TCM.html

https://samate.nist.gov/BF/Classes/_DTC/TCV.html

BF Early Work – Buffer Overflow

Validation towards CWE

BF Class Related CWEs

● BF Data Type Bugs Classes – 78 CWEs:
o 50% Declaration/Definition Operation
o 33.3% Cast/Coerce Operation
➢ 16% Access Error
➢ 0.6% Type Compute Error

● BF Input/Output Bugs Classes – 161 CWEs:
o 80.7% – Input Validation Operation
➢ 68.3% – Injection Error

● BF Memory Bugs Classes 52 CWEs:
o 61.5% Initialize, Dereference,

 Read, Write, Clear Operations
➢ 67.3% Memory Error

BF: https://samate.nist.gov/BF/
CWE: https://cwe.mitre.org/

● Identify CWEs:
1. CWE Filtering
2. Automated Extraction
3. Manual Review

https://samate.nist.gov/BF/
https://cwe.mitre.org/

 1

 2

 9

 10

 1 9

 9

 0

 0

 9

12
1 1

1
1 9

1
190

191

19

 9

 9

102

102

102

10

10 1

10

109

 91

 92

 9

 9

 99
 2

 0

 1

 9

10

10

10 2

10
1090

10

10 9

10 2 10
109

109

10

10

10

10

 0

 1

 2

 9

1102
110

 00

192
19 19 19

 9

1

CWEs by BF Operation

 1 9

 9

 91

 92

 9

 99
 2

 0

 9

 00

 10

 9

10 1

10

109

 9

10

10

10 2

10
1090

10

10 9

10 2 10
109

109

10

10

10

10

 0

 1

1102
110

 2

 0

 0

 1

192
19 19 19

 1
 9

102

102

102

10

 9

 9

 2

12
1 1

1
1 9

1
190

191

19

 9

 9

1

 2

CWEs by D C, N , CV, and C opera on

DC Declare

DC De ne

N efer

N Call

 CV Cast

 CV Coerce

 C Calculate

 C Evaluate

CWEs by Abstrac on

Pillar

Class

Base

Variant

● Data Type CWEs
(incl. Integer Overflow, Juggling, and Pointer Arithmetics) –
mapped by BF DCL, RNS, TCV, TCM operation

16.7

33.3

6.4

1.32.6

9

19.2

14.1

CWEs by BF Consequence
● Input/Output CWEs (incl. Injection) –

mapped by BF DVL and BF DVR consequences

 0

11

11

1

1 9

1

20

22

 90

91 9
99

112

11

11

12

12 12

12

12

12

12 9

1 0

1

1

1 0

1 1

1

1

1 0

1

1

1

22

229

2

2

2

2 0

 1

 2

 2

 0

 2

 2

 1

 2

 9

 91

 9

 9

90

91

91

91

9

9

9

102
10

10

10

109

11

11

129

1 1

1 2

1

1

1

1

1

1
1 9 1 0 1 1

1 2

1

1

1

1

1

1 1 0

1 1

1 2

1

1

1

2 0

2 1
2 2

2 2
2

2

2 9

2

2

2

2

2
29 0

 1

 2

 9

 0 2

 9

 0

 1

 2

 22

 2

 1

 9

 9

 0

 1

 2

9

9

9

 92

9

 2

 9

90

91

11

 2

11

12
22

2

 1

 1

2

2

2

2

2
29 0

 1

 2

 9

 0 2

 9

 0

 1

 2

1

1

1 0

9

11

1 1

1 2

1

1

1

1

1

1

1 0 1 1
1 2

1

1

1

1 9
20

12 12 12

12

12 9

1 0

1 0

 0
129

1

1

1 1 0

1 2
1

2 0

2 2

 1

1

 9

91

9

9

1 9

 0

 1

 2

9

9

9

 92

1

22 11

1

1

1

229

2

2

2 0

 2

102
10

10

10

109

11

2 1

2 2
2

2

2 9

 0

11

 90

91

112
12

1 1

1

1

 2

 2

 91

 9

91

1

1 1

1
1

 22

 2

 9

 9

CWEs by Abstrac on

Pillar

Class

Base

Variant

CWE by DV n ec on Error

 uery n ec on

Command n ec on

 ource Code n ec on

Parameter n ec on

 ile n ec on

CWE by DV or DV Wrong Data for Ne t pera on Consequence

DV nvalid Data

DV Wrong Value, nconsistent Value, and Wrong ype

No consequence (only cause listed

BF – Defined

● B is a …

➢ Structured

➢ Complete

➢ Orthogonal

➢ Language Independent

Classification System of software bugs and weaknesses.

BF Hands On:
BIG-IP TMUI RCE

CVE-2020-5902 In BIG-IP versions 15.0.0-15.1.0.3, 14.1.0-14.1.2.5, 13.1.0-13.1.3.3, 12.1.0-12.1.5.1,
and 11.6.1-11.6.5.1, the Traffic Management User Interface (TMUI), also referred to as the
Configuration utility, has a Remote Code Execution (RCE) vulnerability in undisclosed pages.

● Vulnerability in BIG-IP TMUI login interface
https://[F5 Host]/tmui/login.jsp/

● Proof-Of-Concept: TMSH command execution
https://[F5 Host]/tmui/login.jsp/..;/tmui/locallb/workspace/tmshCmd.jsp

Remote Code
Execution

BIG-IP TMUI RCE (CVE-2020-5902)

../

DVL
(Validate:
Missing,

Data (URL),
Policy)

File Injection
(Relative Path Traversal)

The Failure – caused by final error(s)Caused by the Bug

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5902

BF Description of BIG-IP TMUI RCE

Attributes
Mechanism:
• Format (e.g., via
“.*\.\.;.*“
regular expression)

Source Code:
• Codebase

(login.jsp)

Execution Space:
• Admin

Data State:
• Transferred
(via network)

ConsequenceCause

Improper Operation:
Missing

Injection Error:
File Injection

(Relative Path Traversal)

DVL Operation

Validate

Remote Code
Execution

The Bug

The Failure

BF Hands On:
Bad Alloc

“BadAlloc” Pattern – 25 CVEs

DVR

TCM

MUS

DoS
/

RCE

MAL

MAD

Data Verification
Bug

Type Computation
Weakness

Memory Allocation
Weakness

Memory Addressing
Weakness

Memory Use
Weakness

Failure

CVE-2021-21834 An exploitable integer overflow vulnerability exists within the MPEG-4 decoding functionality of the GPAC
Project on Advanced Content library v1.0.1. A specially crafted MPEG-4 input when decoding the atom for the
“co64” FOURCC can cause an integer overflow due to unchecked arithmetic resulting in a heap-based buffer
overflow that causes memory corruption. An attacker can convince a user to open a video to trigger this vulnerability.

“BadAlloc”(CVE-2021-21834)

41 GF_Err co64_box_read(GF_Box* s, GF_BitStream* bs)

42 {

43 u32 entries;

44 GF_ChunkLargeOffsetBox* ptr = (GF_ChunkLargeOffsetBox*)s;

45 ptr->nb_entries = gf_bs_read_u32(bs);

46

47 ISOM_DECREASE_SIZE(ptr, 4)

48

49 if (ptr->nb_entries > ptr->size / 8) {

50 GF_LOG(GF_LOG_ERROR, GF_LOG_CONTAINER,

 ("[iso file] Invalid number of entries %d in co64\n",

 ptr->nb_entries));

51 return GF_ISOM_INVALID_FILE;

52 }

53

54 ptr->offsets = (u64*)gf_malloc(ptr->nb_entries * sizeof(u64));

55 if (ptr->offsets == NULL) return GF_OUT_OF_MEM;

56 ptr->alloc_size = ptr->nb_entries;

57 for (entries = 0; entries < ptr->nb_entries; entries++) {

58 ptr->offsets[entries] = gf_bs_read_u64(bs);

59 }

60 return GF_OK;

61 }

DVR
(Missing Verify,

Data Value
(number of

entries), Policy) TCM
(Calculate,
Data Value:

Wrong
Argument Value,

Data Type,
Function)

Inconsistent
Value

Over Bounds
Pointer

MUS
(Write,

Object Address:
Over Bounds,
Object Size)

DoS
/

RCE

Buffer
Overflow

MAL
(Allocate,

Object Address:
Over Bounds,
Object Size)

MAD
(Reposition,

Object Address,
Object Size:
Not Enough
Allocated)

Caused by ill-formed data

Caused by the Bug

The Failure – caused by final error(s)

Wrap
Around

Not Enough
Allocated

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21834

41 GF_Err co64_box_read(GF_Box* s, GF_BitStream* bs)

42 {

43 u32 entries;

44 GF_ChunkLargeOffsetBox* ptr = (GF_ChunkLargeOffsetBox*)s;

45 ptr->nb_entries = gf_bs_read_u32(bs);

46

47 ISOM_DECREASE_SIZE(ptr, 4)

48

49

50 GF_LOG(GF_LOG_ERROR, GF_LOG_CONTAINER,

 ("[iso file] Invalid number of entries %d in co64\n",

 ptr->nb_entries));

51 return GF_ISOM_INVALID_FILE;

52 }

53

54 ptr->offsets = (u64*)gf_malloc(ptr->nb_entries * sizeof(u64));

55 if (ptr->offsets == NULL) return GF_OUT_OF_MEM;

56 ptr->alloc_size = ptr->nb_entries;

57 for (entries = 0; entries < ptr->nb_entries; entries++) {

58 ptr->offsets[entries] = gf_bs_read_u64(bs);

59 }

60 return GF_OK;

61 }

Wrap
Around

Over Bounds
Pointer

Buffer
Overflow

Not Enough
Allocated

Inconsistent
Value

DVR
(Missing Verify,

Data Value
(number of

entries), Policy)
TCM

(Calculate, Data
Value: Wrong

Argument Value,
Data Type,
Function)

MUS
(Write,

Object Address:
Over Bounds,
Object Size)

DoS
/

RCE

MAL
(Allocate,

Object Address:
Over Bounds,
Object Size)

MAD
(Reposition,

Object Address,
Object Size:
Not Enough
Allocated)

if ((u64)ptr->nb_entries > ptr->size / 8

 || (u64)ptr->nb_entries > (u64)SIZE_MAX/sizeof(u64)){

CVE-2021-21834 An exploitable integer overflow vulnerability exists within the MPEG-4 decoding functionality of the GPAC
Project on Advanced Content library v1.0.1. A specially crafted MPEG-4 input when decoding the atom for the
“co64” FOURCC can cause an integer overflow due to unchecked arithmetic resulting in a heap-based buffer
overflow that causes memory corruption. An attacker can convince a user to open a video to trigger this vulnerability.

“BadAlloc” – the Fix

Caused by ill-formed data

Caused by the Bug

The Failure – caused by final error(s)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21834

B Description of “BadAlloc”

Attributes

Mechanism:
• Range

Source Code:
• Third Party (Library

box_code_base.c)

Execution Space:
• Local

Data State:
• tored (“number of

entries” read from file

ConsequenceCause

Improper Operation:
Missing

Improper Data Value:
Inconsistent Value

(> max 64-bit int)

DVR Operation

Verify
((u64)ptr->nb_entries >

(u64)SIZE_MAX/sizeof(u64))

Mechanism:
• Operator

(Arithmetic: ‘*’)

Source Code:
• Third Party (Library

box_code_base.c)

Data Value Kind:
• Numeric

Data Type Kind:
• Structured

ConsequenceCause

Improper Data Value:
Wrong Argument Value

Improper Data Value:
Wrap Around

TCM Operation

Calculate

(ptr->nb_entries*sizeof(u64))

Attributes

Attributes

Mechanism:
• Explicit

Source Code:
• Third Party (Library

box_code_base.c)

Execution Space:
• Userland

Ownership:
• Single

Location:
• Heap

ConsequenceCause

Improper Data Value:
Wrong Size Used

(Size of memory to allocate)

Improper Object Size:
Not Enough Memory Allocated

MAL Operation

Allocate
(gf_malloc())

Attributes

Mechanism:
• Sequential

Source Code:
• Third Party (Library

box_code_base.c)

Execution Space:
• Userland

Location:
• Heap

ConsequenceCause

Improper Object Size:
Not Enough Memory Allocated

Improper Data Value:
Over Bounds Pointer

MAD Operation

Reposition

Attributes

Mechanism:
• Sequential

Source Code:
• Third Party (Library

box_code_base.c)

Execution Space:
• Userland

Span:
• Huge

Location:
• Heap

ConsequenceCause

Improper Data Value:
Over Bounds Pointer

Memory Error:
Buffer Overflow

MUS Operation

Write

Denial of Service
/

Remote Code
Execution

BF Hands On:
Incorrect Pointer Scaling

Wrong
Type

CWE-468, Example 1: This example attempts to calculate the position of the second byte of a pointer.

Example Language: C

int *p = x;

char * second_char = (char *)(p + 1);

TCV
(Wrong Cast,

Data Value, Data
Type)

NRS
(Call, Data Type,

Wrong
Argument Type,

Function)

MUS
(Read,

Object Address:
Over Bounds,
Object Size)

Buffer
Overflow

TCM
(Calculate,
Data Type,
Data Value,

Wrong
Overloaded
Function)

MAD
(Reposition,

Object Address,
Wrong Index)

Wrong
Overloaded

Function

Wrong
Result

Incorrect Pointer Scaling (CWE-468, Ex. 1)

Caused by ill-formed data

Caused by the Bug

Byte 1 Byte 2 Byte 3 Byte 4

p + 1p

second_char

moving 4 bytes

Over Bounds
Pointer

https://cwe.mitre.org/data/definitions/468.html

CWE-468 Example 1

This example attempts to calculate the position of the second byte of a pointer.

Example Language: C

int *p = x;

 (char *)(p + 1)

char * second_char = (char *)p + 1;

Incorrect Pointer Scaling – the Fix

Byte 1 Byte 2 Byte 3 Byte 4

(char *)p + 1p

second_char

Wrong
Type

TCV
(Wrong Cast,

Data Value, Data
Type)

NRS
(Call, Data Type,

Wrong
Argument Type,

Function)

MUS
(Read,

Object Address:
Over Bounds,
Object Size)

Buffer
Overflow

TCM
(Calculate,
Data Type,
Data Value,

Wrong
Overloaded
Function)

MAD
(Reposition,

Object Address,
Wrong Index)

Wrong
Overloaded

Function

Wrong
Result

Caused by ill-formed data

Caused by the Bug

Over Bounds
Pointer

https://cwe.mitre.org/data/definitions/468.html

Mechanism:
• Pass In

Source Code:
• Codebase

Data Value Kind:
• Pointer

Data Type Kind:
• Primitive

BF Description of CWE-468, Example 1

Mechanism:
• Ad-hoc Bind

Source Code:
• Codebase

Entity:
• Function

Data Type Kind:
• Primitive

ConsequenceCause

Improper Data Type :
Wrong Argument Type

Improper Function:
Wrong Overloaded Function

(+(int*,int) instead of +(char*,int))

NRS Operation

Call
(+ operator)

Attributes

Attributes

ConsequenceCause

Improper Function:
Wrong Overloaded Function

Improper Data Value:
Wrong Result

(Pointer Position)

TCM Operation

Calculate

Attributes

Mechanism:
• Direct

Source Code:
• Codebase

Execution Space:
• Userland

Object Location:
• Stack

ConsequenceCause

Improper Data Value:
Wrong Index

Improper Address:
Over Bounds Pointer

MAD Operation

Reposition

Attributes
Mechanism:
• Direct

Source Code:
• Codebase

Execution Space:
• Userland

Pointer Span:
• Little

Object Location:
• Stack

ConsequenceCause

Improper Object Address:
Over Bounds Pointer

Memory Error:
Buffer Overflow

MUS Operation

Read

ConsequenceCause

Improper Operation:
Wrong

Improper Data Type:
Wrong Type

(int instead of char)

TCV Operation

Cast
((char *)(p + 1) instead of

(char *)p + 1)

Attributes

Mechanism:
• Operator

Source Code:
• Codebase

Data Value Kind:
• Pointer

Data Type Kind:
• Primitive

int *p = x;

char * second_char = (char *)(p + 1);

BF Hands On:
Heartbleed

CVE-2014-0160
The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat
Extension packets, which allows remote attackers to obtain sensitive information from process memory via
crafted packets that trigger a buffer over-read, as demonstrated by reading private keys, related to
d1_both.c and t1_lib.c, aka the Heartbleed bug.

Heartbleed (CVE-2014-0160)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160

CVE-2014-0160 The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat
Extension packets, which allows remote attackers to obtain sensitive information from process memory via crafted packets that
trigger a buffer over-read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug.

Heartbleed (CVE-2014-0160)

1448 dtls1_process_heartbeat(SSL *s)

1449 {

1450 unsigned char *p = &s->s3->rrec.data[0], *pl;

1451 unsigned short hbtype;

1452 unsigned int payload;

1453 unsigned int padding = 16; /* Use minimum padding */

1454

1455 /* Read type and payload length first */

1456 hbtype = *p++;

1457 n2s(p, payload);

1458 pl = p;

...

1465 if (hbtype == TLS1_HB_REQUEST)

1466 {

1467 unsigned char *buffer, *bp;

...

1470 /* Allocate memory for the response, size is 1 byte

1471 * message type, plus 2 bytes payload, plus

1472 * payload, plus padding

1473 */

1474 buffer = OPENSSL_malloc(1 + 2 + payload + padding);

1475 bp = buffer;

1476

1477 /* Enter response type, length and copy payload */

1478 *bp++ = TLS1_HB_RESPONSE;

1479 s2n(payload, bp);

1480 memcpy(bp, pl, payload);

DVR
(Verify: Missing,

Data Value
(payload length),

Policy)

MAD
(Reposition,

Object Address,
Data Value:

Wrong Size Used)

Inconsistent
Value

MUS
(Read,

Object Address:
Over Bounds

Pointer,
Object Size)

Over Bounds
Pointer

/* Naive implementation of memcpy

void *memcpy (void *dst, const void *src, size_t n)

{

 size_t i;

 for (i=0; i<n; i++)

 *(char *) dst++ = *(char *) src++;

 return dst;

}

Buffer
Overflow

plbp

payload

Caused by ill-formed dataCaused by the Bug

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160

DVR
(Verify: Missing,

Data Value
(payload length),

Policy)

DVR
(Verify: Missing,

Data Value
(payload length),

Policy)

Inconsistent
Value

DVR
(Verify: Missing,

Data Value
(payload length),

Policy)

Buffer
Overflow

Not Cleared
Object

Over
Bounds

Heartbleed (CVE-2014-0160)

DVR
(Verify: Missing,

Data Value
(payload

length), Policy)

DVR
(Verify: Missing,

Data Value
(payload

length), Policy)

Buffer
Overflow

Caused by ill-formed data

Caused by the Bug

The Failure – caused by final error(s)

Mechanism:
• Sequential

Source Code:
• Codebase

(d1_both.c and tl_lib.c)

Execution Space:
• Userland

Location:
• Heap

Mechanism:
• Quantity

Source Code:
• Codebase
(d1_both.c and tl_lib.c)

Execution Space:
• Admin

State:
• Transferred
(via network)

Attributes

Mechanism:
• Sequential

Source Code:
• Codebase

Execution Space:
• Userland

Span:
• Huge

Location:
• Heap

ConsequenceCause

Improper Operation:
Missing

Memory Error:
Not Cleared Object

MUS Operation

Clear

Attributes

ConsequenceCause

Improper Data Value :
Wrong Size Used

(for s→s3→rrec.data[0])

Improper Object Address:
Over Bounds Pointer

MAD Operation

Reposition

Attributes
Mechanism:
• Sequential

Source Code:
• Codebase
(d1_both.c and tl_lib.c)

Execution
Space:
• Userland

Span:
• Huge

Location:
• Heap

ConsequenceCause

Memory Error:
Buffer Overflow

MUS Operation

ReadImproper Object Address:
Over Bounds Pointer

(for s→s3→rrec.data[0])

BF Description of Heartbleed

Information
Exposure

A WeaknessThe Bug The Failure

Attributes

ConsequenceCause

Improper Operation:
Missing

Improper Data Value:
Inconsistent Value
(for payload size)

DVR Operation

Verify

BF Early Work – Heartbleed

Bojanova, I., Black, P., Yesha, Y. and Wu, Y. (2016), The Bugs
Framework (BF): A Structured Approach to Express Bugs,

IEEE International Conference on Software Quality,
Reliability & Security (QRS 2016), Viena, AT,

BF Hands On:
NLP/ML/AI on Failures and Risks

BF Taxonomy – BF.xml

CVE-2014-0160 - Heartbleed.bfcve

Bug/Weakness/Failure

CVE-2014-0160 - Heartbleed.bfcve

CVE-2021-21834 - Bad Alloc.bfcve

CWE mapped to BF – BFCWE.xml

BF in ML & AI

Machine readable formats of:
● BF taxonomy
● BF vulnerability descriptions
● CWEs to BF mappings

→Query and analyze sets of BF descriptions
→NLP, ML, and AI projects related to software

bugs/weaknesses, failures and risks.

BF in ML & AI

● JHU APL – Automated Vulnerability Testing via Executable Attack Graphs:
o Chain vulnerabilities via logical directed graphs

o Determine most mitigation “paths” with least changes

o Detect user behavior prior to malicious effect

● RIT Secure and Trustworthy Cyberspace (SaTC):

BF – Potential Impact

● Allow precise communication
about software bugs and weaknesses

● Help identify exploit mitigation techniques

BF – Potential Impacts

BF

Government

Academia

Industry

Questions

Irena Bojanova: irena.bojanova@nist.gov

Questions

https://samate.nist.gov/BF/

	Default Section
	Slide 1: Explainable Vulnerabilities Descriptions with NIST BF Keynote – ISSRE, SHIFT & IWSF: Software Hardware Interaction Faults & International Workshop on Software Faults Charlotte, NC, USA (Remote Attendance) – Oct. 31, 2022
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Terminology
	Slide 5: “BadAlloc” Pattern – 25 CVEs

	Untitled Section
	Slide 6: Existing Repositories
	Slide 7: Commonly Used Repositories
	Slide 8: Repository Problems
	Slide 9: Problem #1: Imprecise Descriptions
	Slide 10: Problems #2, #3: Unclear Causality, Tracking
	Slide 11: Problems #4, #5: Gaps/Overlaps in Coverage
	Slide 12: The Bugs Framework (BF)
	Slide 13: BF Goals
	Slide 14: BF Features – Clear Causal Descriptions
	Slide 15: BF Features – Chaining Weaknesses
	Slide 16: BF Features – Backtracking
	Slide 17: BF Features – Converging Vulnerabilities
	Slide 18: BF Features – Classification
	Slide 19: BF Taxonomy
	Slide 20: BF – Bugs Models
	Slide 21: BF Data Type Bugs Model
	Slide 22: BF Memory Bugs Model
	Slide 23: BF – Clusters of Bugs Classes
	Slide 24: BF Classes – MAD & MUS
	Slide 25: BF Classes – DVL & DVR
	Slide 26: BF Classes – NRS, TCV, TCM
	Slide 27: BF Early Work – Buffer Overflow
	Slide 28: Validation towards CWE
	Slide 29: BF Class Related CWEs
	Slide 30: CWEs by BF Operation
	Slide 31: CWEs by BF Consequence
	Slide 32: BF – Defined
	Slide 33: BF Hands On: BIG-IP TMUI RCE
	Slide 34: BIG-IP TMUI RCE (CVE-2020-5902)
	Slide 35: BF Description of BIG-IP TMUI RCE
	Slide 36: BF Hands On: Bad Alloc
	Slide 37: “BadAlloc” Pattern – 25 CVEs
	Slide 38: “BadAlloc”(CVE-2021-21834)
	Slide 39: “BadAlloc” – the Fix
	Slide 40: BF Description of “BadAlloc”
	Slide 41: BF Hands On: Incorrect Pointer Scaling
	Slide 42: Incorrect Pointer Scaling (CWE-468, Ex. 1)
	Slide 43: Incorrect Pointer Scaling – the Fix
	Slide 44: BF Description of CWE-468, Example 1
	Slide 45: BF Hands On: Heartbleed
	Slide 46: Heartbleed (CVE-2014-0160)
	Slide 47: Heartbleed (CVE-2014-0160)
	Slide 48: Heartbleed (CVE-2014-0160)
	Slide 49: BF Description of Heartbleed
	Slide 50: BF Early Work – Heartbleed
	Slide 51: BF Hands On: NLP/ML/AI on Failures and Risks
	Slide 52: BF Taxonomy – BF.xml
	Slide 53: CVE-2014-0160 - Heartbleed.bfcve
	Slide 54
	Slide 55: CVE-2014-0160 - Heartbleed.bfcve
	Slide 56: CVE-2021-21834 - Bad Alloc.bfcve
	Slide 57: CWE mapped to BF – BFCWE.xml
	Slide 58: BF in ML & AI
	Slide 59
	Slide 60: BF – Potential Impact
	Slide 61: BF – Potential Impacts
	Slide 62: Questions
	Slide 63: Questions

