
The NIST
Bugs Framework (BF)

Input/Output Check Bugs Taxonomy:
Injection Errors in Spotlight

Irena Bojanova
Carlos Galhardo
Sara Moshtari

https://samate.nist.gov/BF/

● Terminology:
o Bug, Weakness
o Vulnerability
o Failure

● Existing Repositories:
o CWE
o CVE
o NVD

Agenda

● The Bugs Framework (BF)
o Goals
o Features

● Examples:
o BIG-IP TMUI RCE
o Heartbleed

● Potential Impacts

Terminology

● Software Bug:
○ A coding error
○ Needs to be fixed

● Software Weakness – difficult to define:
o Caused by a bug or ill-formed data
o Weakness Type – a meaningful notion!

● Software Vulnerability:
○ An instance of a weakness type that leads to a security failure
o May have several underlying weaknesses

● Security failure:
o A violation of a system security requirement

Bug, Weakness, Vulnerability, Failure

Existing Repositories

● Weaknesses:

CWE – Common Weakness Enumeration

● Vulnerabilities:

CVE – Common Vulnerabilities and Exposures

→ over 18 000 documented in 2020

● Linking weaknesses to vulnerabilities – CWEs to CVEs:

NVD – National Vulnerabilities Database

Commonly Used Repositories

1. Imprecise Descriptions – CWE & CVE

2. Unclear Causality – CWE & CVE

3. Gaps in Coverage – CWE

4. Overlaps in Coverage – CWE

Repository Problems

The Bugs Framework
(BF)

1. Solve the problems of imprecise descriptions and unclear causality

2. Solve the problems of gaps and overlaps in coverage

BF Goals

…

● BF describes a bug/weakness as:
○ An improper state

and
○ Its transition

● Improper State –

a tuple(operation, operand1, ... , operandn)

, where at least one element is improper

● Transition –

the result of the operation over the operands

Improper
State 2

Improper
State 2:

(operation 2,
operand 21, ...

operand 2i,
...)

BF Features – Clear Causal Descriptions

Improper
State 1

results in
Improper operand 2i

Improper
State 1

(operation 1
operand 11 ...

operand 1i
...)

Improper
State n

…

Intermediate State – caused by ill-formed data
– at least one operand is improper

Initial State – caused by the Bug
– the operation is improper

Failure

Final State – the Failure
– caused by a final error

Final
Error

● BF describes a vulnerability as:
○ A chain of improper states and their transitions
○ States change until a failure is reached

Improper
State 2

(operation 2
operand 2j

...)

Improper
State 2

(operation 2
operand 21 ...

operand 2j
...)

BF Features – Chaining Weaknesses

Improper
State 1

(operation 1
operand 11 ...

operand 1i
...)

…

Improper
operand np

Improper
operand 2j

Improper
State n

(operation n
…

operand np
...)

Improper
operand 3k

Failure

Final
Error

Intermediate State – caused by ill-formed data
– at least one operand is improper

Initial State – caused by the Bug
– the operation is improper

Final State – the Failure
– caused by a final error

● How to find the Bug?
● Go backwards by operand until an operation is a cause

Improper
State 2

(operation 2
operand 2j

...)

BF Features – Causes and Consequences

Improper
State 1

(operation 1
operand 11 ...

operand 1i
...)

…

Improper
operand np

Improper
operand 2j

Improper
State n

(operation n
…

operand np
...)

Improper
operand 3k

Failure

Final
Error

Intermediate State – caused by ill-formed data
– at least one operand is improper

Initial State – caused by the Bug
– the operation is improper

Final State – the Failure
– caused by a final error

BF Features – Converging Vulnerabilities

Improper
State 1

(operation 1
operand 11 ...

operand 1i
...)

…

Improper
operand 2i

Improper
State q’

(operation q’
…

operand q’k
...)

…

Improper
State n

(operation n
operand np ...
operand nm

...)

Final
Error’

Improper
operand np

Failure

Final
Error

Final
Error

Intermediate State – caused by ill-formed data
– at least one operand is improper

Initial State – caused by the Bug
– the operation is improper

Final State – the Failure
– caused by a final error

Improper
State 1’

(operation 1’
operand 1’1 ...

operand 1’i
...)

Improper
operand 2’i

Improper
operand q’k

● BF Class – a taxonomic category of a weakness type, defined by:

○ A set of operations

○ All valid cause → consequence relations

○ A set of attributes

BF Features – Classification

BF – Bugs Models

● Example:

The BF Data Check Bugs Model:

○ Two phases, corresponding to
the BF data check classes:
DVL and DVR

○ Data Check operations flow

DVL

Validate

Sanitize

DVR

Verify

Correct

Unchecked
Data

Checked
Data

Data
Lifetime

BF Classes – Examples: DVL & DVR

Data Validation Bugs (DVL)

Improper Data
(from previous operation):
• Corrupted Data
• Tampered Data

Improper Operation:
• Missing
• Erroneous
• Under-Restrictive Policy
• Over-Restrictive Policy

• Validate
• Sanitize

ConsequencesCauses

Attributes

DVL Operations

Improper Policy (as data
from previous operation):
• Corrupted Policy
• Tampered Policy

Improper Data
for next operation:

• Invalid Data

Injection Error:
• Query Injection
• Command Injection
• Source Code Injection
• Parameter Injection
• File Injection

Operation Data
Mechanism:
• Safelist
• Denylist
• Format
• Length

Source Code:
• Codebase
• Third Party
• Standard Library
• Processor

Execution Space:
• Local
• Admin
• Bare-Metal

State:
• Entered
• Stored
• In Use
• Transferred

Data Verification Bugs (DVR)

• Verify
• Correct

ConsequencesCauses

Improper Data
for next operation:
• Wrong Value
• Inconsistent Value
• Wrong Type

Attributes

DVR Operations

Improper Operation:
• Missing
• Erroneous
• Under-Restrictive Policy
• Over-Restrictive Policy

Improper Data
(from previous operation):
• Invalid Data

Operation Data
Mechanism:
• Value
• Quantity
• Range
• Type
• Other Rules

Source Code:
• Codebase
• Third Party
• Standard Library
• Processor

Execution Space:
• Local
• Admin
• Bare-Metal

State:
• Entered
• Stored
• In Use
• Transferred

BF Classes – Examples: MAD & MUS

Memory Addressing Bugs (MAD) Memory Use Bugs (MUS)

Attributes

Improper Size:
• Inconsistent Value

Wrong Value

Improper Pointer:
• NULL Pointer
• Wild Pointer
• Dangling Pointer
• Over Bounds
• Under Bounds
• Untrusted Pointer
• Wrong Position
• Hardcoded Address
• Casted Pointer

Improper Operation:
• Missing
• Mismatched
• Erroneous

MAD Operations

• Initialize
• Reposition
• Reassign

ConsequencesCauses

Improper Pointer
for Next Operation:
• NULL Pointer
• Wild Pointer
• Dangling Pointer
• Over Bounds
• Under Bounds
• Untrusted Pointer
• Wrong Position
• Casted Pointer
• Forbidden Address

Operation Object
Mechanism:
• Direct
• Sequential

Source Code:
• Codebase
• Third Party
• Standard

Library
• Processor

Execution
Space:
• Userland
• Kernel
• Bare-

Metal

Location:
• Stack
• Heap
• ...

Attributes

Improper Operation:
• Missing
• Mismatched
• Erroneous

Improper Pointer:
• NULL Pointer
• Wild Pointer
• Dangling Pointer
• Over Bounds
• Under Bounds
• Untrusted Pointer
• Wrong Position
• Casted Pointer
• Forbidden Address

Improper Size:
• Wrong Value

Memory Error:
• Uninitialized Object
• Not Cleared Object
• NULL Pointer

Dereference
• Untrusted Pointer

Dereference
• Object Corruption
• Type Confusion
• Use After Free
• Buffer Overflow
• Buffer Underflow
• Uninitialized

Pointer Dereference

• Initialize
• Dereference
• Read
• Write
• Clear

MUS Operations ConsequencesCauses

Operation Pointer Object
Mechanism:
• Direct
• Sequential

Source Code:
• Codebase
• Third Party
• Standard

Library
• Processor

Execution Space:
• Userland
• Kernel
• Bare-Metal

Span:
• Little
• Moderate
• Huge

Location:
• Stack
• Heap
• ...

Input/Output CWEs (incl. Injection)

● Mapped by BF DVL and BF DVR consequences

BF – Defined

● BF is a …

➢ Structured

➢ Complete

➢ Orthogonal

➢ Language independent

classification of software bugs and weaknesses

BF Example 1:
Description of
BIG-IP TMUI RCE

CVE-2020-5902 In BIG-IP versions 15.0.0-15.1.0.3, 14.1.0-14.1.2.5, 13.1.0-13.1.3.3, 12.1.0-12.1.5.1,
and 11.6.1-11.6.5.1, the Traffic Management User Interface (TMUI), also referred to as the
Configuration utility, has a Remote Code Execution (RCE) vulnerability in undisclosed pages.

● Vulnerability in BIG-IP TMUI login interface
https://[F5 Host]/tmui/login.jsp/

● Proof-Of-Concept: TMSH command execution
https://[F5 Host]/tmui/login.jsp/..;/tmui/locallb/workspace/tmshCmd.jsp

Remote Code
Execution

BIG-IP TMUI RCE (CVE-2020-5902)

../

DVL
(Validate:
Missing,

Data (URL),
Policy)

File Injection
(Relative Path Traversal)

The Failure – caused by final error(s)Caused by the Bug

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5902

BF Description of BIG-IP TMUI RCE

Attributes
Operation Data

Mechanism:
• Format (e.g., via

“.*\.\.;.*“
regular expression)

Source Code:
• Codebase

(login.jsp)

Execution
Space:
• Admin

State:
• Transferred
(via network)

ConsequenceCause

Improper Operation:
Missing

Injection Error:
File Injection

(Relative Path Traversal)

DVL Operation

Validate
Remote Code

Execution

The Bug

The Failure

BF Example 2:
Updated
Description of
Heartbleed

CVE-2014-0160 The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat
Extension packets, which allows remote attackers to obtain sensitive information from process memory via crafted packets that
trigger a buffer over-read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug.

Heartbleed (CVE-2014-0160)

1448 dtls1_process_heartbeat(SSL *s)

1449 {

1450 unsigned char *p = &s->s3->rrec.data[0], *pl;

1451 unsigned short hbtype;

1452 unsigned int payload;

1453 unsigned int padding = 16; /* Use minimum padding */

1454

1455 /* Read type and payload length first */

1456 hbtype = *p++;

1457 n2s(p, payload);

1458 pl = p;

...

1465 if (hbtype == TLS1_HB_REQUEST)

1466 {

1467 unsigned char *buffer, *bp;

...

1470 /* Allocate memory for the response, size is 1 byte

1471 * message type, plus 2 bytes payload, plus

1472 * payload, plus padding

1473 */

1474 buffer = OPENSSL_malloc(1 + 2 + payload + padding);

1475 bp = buffer;

1476

1477 /* Enter response type, length and copy payload */

1478 *bp++ = TLS1_HB_RESPONSE;

1479 s2n(payload, bp);

1480 memcpy(bp, pl, payload);

DVR
(Verify:

Missing, Data
(payload

length), Policy)

MAD
(Reposition,

Pointer, Object,
Size: Incon-

sistent Value)

Inconsistent
Value

MUS
(Read, Pointer:
Over Bounds,
Object, Size)

Over
Bounds

/* Naive implementation of memcpy

void *memcpy (void *dst, const void *src, size_t n)

{

 size_t i;

 for (i=0; i<n; i++)

 *(char *) dst++ = *(char *) src++;

 return dst;

}

Buffer
Overflow

plbp

payload

Caused by ill-formed dataCaused by the Bug

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160

DVR
(Verify:

Missing, Data
(payload

length), Policy)

MAD
(Reposition,

Pointer, Object,
Size: Incon-

sistent Value,
Size)

Inconsistent
Value

MUS
(Clear: Missing,
Pointer, Object,

Size)

Buffer
Overflow

Not Cleared
Object

Over
Bounds

Clear Causality in Heartbleed

MUS
(Read, Pointer:
Over Bounds,
Object, Size)

Information
Exposure

Buffer
Overflow

Caused by ill-formed data

Caused by the Bug

The Failure – caused by final error(s)

Operation Object
Mechanism:
• Sequential

Source Code:
• Codebase

(d1_both.c and tl_lib.c)

Execution Space:
• Userland

Location:
• Heap

Attributes
Operation Data

Mechanism:
• Quantity

Source Code:
• Codebase

(d1_both.c and tl_lib.c)

Execution
Space:
• Userland

State:
• Transferred
(via network)

ConsequenceCause

Improper Operation:
Missing

Improper Data:
Inconsistent Value

(for payload size)

DVR Operation

Verify

Attributes
Operation Pointer Object

Mechanism:
• Sequential

Source Code:
• Codebase

Execution Space:
• Userland

Span:
• Huge

Location:
• Heap

ConsequenceCause

Improper Operation:
Missing

Memory Error:
Not Cleared Object

MUS Operation

Clear

Attributes

ConsequenceCause

Improper Size:
Inconsistent Value (for size
of s→s3→rrec.data[0])

Improper Pointer:
Over Bounds

MAD Operation

Reposition

Attributes

Operation Pointer Object
Mechanism:
• Sequential

Source Code:
• Codebase

(d1_both.c and tl_lib.c)

Execution
Space:
• Userland

Span:
• Huge

Location:
• Heap

ConsequenceCause

Memory Error:
Buffer Overflow

MUS Operation

ReadImproper Pointer:
Over Bounds
(for s→s3→rrec.data[0])

BF Description of Heartbleed

Information
Exposure

A Weakness

The Bug

The Failure

Heartbleed in XML Format

BF – Potential Impact

● Allow precise communication
about software bugs and weaknesses

● Help identify exploit mitigation techniques

BF – Potential Impacts

BF

Government

Academia

Industry

Questions

Irena Bojanova: irena.bojanova@nist.gov

Carlos Galhardo: cegalhardo@inmetro.gov.br

Questions

https://samate.nist.gov/BF/

	Slide 1: The NIST Bugs Framework (BF) Input/Output Check Bugs Taxonomy: Injection Errors in Spotlight
	Slide 2: Agenda
	Slide 3: Terminology
	Slide 4: Bug, Weakness, Vulnerability, Failure
	Slide 5: Existing Repositories
	Slide 6: Commonly Used Repositories
	Slide 7: Repository Problems
	Slide 8: The Bugs Framework (BF)
	Slide 9: BF Goals
	Slide 10: BF Features – Clear Causal Descriptions
	Slide 11: BF Features – Chaining Weaknesses
	Slide 12: BF Features – Causes and Consequences
	Slide 13: BF Features – Converging Vulnerabilities
	Slide 14: BF Features – Classification
	Slide 15: BF – Bugs Models
	Slide 16: BF Classes – Examples: DVL & DVR
	Slide 17: BF Classes – Examples: MAD & MUS
	Slide 18: Input/Output CWEs (incl. Injection)
	Slide 19: BF – Defined
	Slide 20: BF Example 1: Description of BIG-IP TMUI RCE
	Slide 21: BIG-IP TMUI RCE (CVE-2020-5902)
	Slide 22: BF Description of BIG-IP TMUI RCE
	Slide 23: BF Example 2: Updated Description of Heartbleed
	Slide 24: Heartbleed (CVE-2014-0160)
	Slide 25: Clear Causality in Heartbleed
	Slide 26: BF Description of Heartbleed
	Slide 27: Heartbleed in XML Format
	Slide 28: BF – Potential Impact
	Slide 29: BF – Potential Impacts
	Slide 30: Questions
	Slide 31: Questions

