
The Bugs Framework (BF) “Hands-On”

Software developer’s and tester’s “Best Friend”

Irena Bojanova Paul E. Black
National Institute of Standards and Technology (NIST)

Tutorial at HoTSoS, April, 2017

https://samate.nist.gov/BF/

Introduction

⚫ Advancements of scientific foundation in cyber-security rely on
availability of accurate, precise, and non-ambiguous:

✓ definitions of software weaknesses (bugs) and

✓ descriptions of software vulnerabilities.

⚫ This tutorial will demonstrate how you can more accurately and quickly diagnose and
describe vulnerabilities using the Bugs Framework (BF).

Outline

⚫ Problems With Current Bug Descriptions

⚫ Need for Structured Approach

⚫ The Bugs Framework (BF)

– Developed BF Classes

– The Buffer Overflow (BOF) Class

– Examples of Applying BOF

– Exercises on Applying BOF

⚫ Other BF Classes

– Injection (INJ), Control of Interaction Frequency (CIF),
Faulty Operation (FOP), and Cryptography (CRY)

⚫ Next Steps

Problems With Current Bug Descriptions

Common Weakness Enumeration (CWE)

⚫ A “dictionary” of every class of bug or flaw in
software. It is the best dictionary by far.

⚫ More than 600 distinct classes, e.g.,
✓ buffer overflow
✓ directory traversal
✓ OS injection
✓ race condition
✓ cross-site scripting
✓ hard-coded password
✓ insecure random numbers.

http://cwe.mitre.org/

However, CWE has problems:

⚫ Definitions are imprecise and inconsistent.

⚫ Entrees are “coarse grained” – bundle lots of
stuff, e.g. consequences and likely attacks.

⚫ Coverage is uneven –
some combinations well represented and
others not represented at all.

⚫ No mobile weaknesses, e.g., battery drain,
physical sensors (GPS, gyro, microphone, hi-
res camera), unencrypted wireless
communication, etc.

The rise in cyberattacks leads to considerable community and government efforts to record
software weaknesses, faults, failures, vulnerabilities and attacks.

http://cwe.mitre.org/

CWEs – Gaps in Coverage

e.g. Buffer Overflow

⚫ Writes before start and after end:
CWE-124: Buffer Underwrite (’Buffer Underflow')
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

versus

⚫ Writes (not expressed in title) in stack and heap:
CWE-121: Stack-based Buffer Overflow
CWE-122: Heap-based Buffer Overflow.

CWEs – Too Detailed

e.g. Path Traversal – CWE for every tiny variant:
⚫ CWE-23: Relative Path Traversal

⚫ CWE-24: Path Traversal: '../filedir’

⚫ CWE-25: Path Traversal: '/../filedir’

⚫ CWE-26: Path Traversal: '/dir/../filename’

⚫ CWE-27: Path Traversal: 'dir/../../filename’

⚫ CWE-28: Path Traversal: '..\filedir’

⚫ CWE-29: Path Traversal: '\..\filename’

⚫ CWE-30: Path Traversal: '\dir\..\filename’

⚫ CWE-31: Path Traversal: 'dir\..\..\filename’

⚫ CWE-32: Path Traversal: '...' (Triple Dot)

⚫ CWE-33: Path Traversal: '....' (Multiple Dot)

⚫ CWE-34: Path Traversal: '....//’

⚫ CWE-35: Path Traversal: '.../...//'

Software Fault Patterns (SFP) –
Improve on CWEs

Parameters
Buffer

location

Access

kind
Access position

Boundary

exceeded

heap stack write read inside outside lower upper

119 -

Improper

Restriction of

Operations

within Bounds

of Buffer

√ √ √ √ √ √ √

120 - Buffer

Copy without

Checking Size

of Input

√ √ √ √ √ √

121 - Stack

Overflow
√ √ √ √ √

122 - Heap

Overflow
√ √ √ √ √

123 - Write-

what-where

Condition
√ √ √ √ √

124 - Buffer

Underwrite
√ √ √ √ √

125 - Out-of-

bounds read
√ √ √ √ √

126 - Buffer

Overread
√ √ √ √ √

127 - Buffer

Underread
√ √ √ √ √

CWE-119: Improper Restriction of Operations within the Bounds
of a Memory Buffer

Summary: The software performs operations on a memory
buffer, but it can read from or write to a memory location that is
outside of the intended boundary of the buffer.
Extended description: Certain languages allow direct addressing
of memory locations and do not automatically ensure that these
locations are valid for the memory buffer that is being
referenced. This can cause read or write operations to be
performed on memory locations that may be associated with
other variables, data structures, or internal program data. As a
result, an attacker may be able to execute arbitrary code, alter
the intended control flow, read sensitive information, or cause
the system to crash.

CWE-120: Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')

Summary: The program copies an input buffer to an output

buffer without verifying that the size of the input buffer is less

than the size of the output buffer, leading to a buffer overflow.

Extended Description: A buffer overflow condition exists when

a program attempts to put more data in a buffer than it can

hold, or when a program attempts to put data in a memory area

outside of the boundaries of a buffer.

Common Consequences: Buffer overflows often can be used to
execute arbitrary code. Buffer overflows generally lead to
crashes.

⚫ SFP cluster CWEs into
categories. Each cluster is
factored into formally defined
attributes, with sites
(“footholds”), conditions,
properties, sources, sinks, etc.

⚫ SFP is a description of an family
of computations that are:
✓ Described as patterns with an

invariant core and variant parts.

✓ Aligned with injury.

✓ Aligned with operational views and
risk through events.

✓ Fully identifiable in code (discernable).

✓ Aligned with CWE.

✓ With formally defined characteristics.

Semantic Templates (STs) –
Improve on CWEs, too

Parameters
Buffer

location
Access kind Access position

Boundary

exceeded

heap stack write read inside outside lower upper

119 - Improper

Restriction of

Operations

within Bounds of

Buffer

√ √ √ √ √ √ √

120 - Buffer

Copy without

Checking Size

of Input

√ √ √ √ √ √

121 - Stack

Overflow
√ √ √ √ √

122 - Heap

Overflow
√ √ √ √ √

123 - Write-

what-where

Condition
√ √ √ √ √

124 - Buffer

Underwrite
√ √ √ √ √

125 - Out-of-

bounds read
√ √ √ √ √

126 - Buffer

Overread
√ √ √ √ √

127 - Buffer

Underread
√ √ √ √ √

CWE-119: Improper Restriction of Operations within the Bounds
of a Memory Buffer

Summary: The software performs operations on a memory
buffer, but it can read from or write to a memory location that is
outside of the intended boundary of the buffer.
Extended description: Certain languages allow direct addressing
of memory locations and do not automatically ensure that these
locations are valid for the memory buffer that is being
referenced. This can cause read or write operations to be
performed on memory locations that may be associated with
other variables, data structures, or internal program data. As a
result, an attacker may be able to execute arbitrary code, alter
the intended control flow, read sensitive information, or cause
the system to crash.

CWE-120: Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')

Summary: The program copies an input buffer to an output

buffer without verifying that the size of the input buffer is less

than the size of the output buffer, leading to a buffer overflow.

Extended Description: A buffer overflow condition exists when

a program attempts to put more data in a buffer than it can

hold, or when a program attempts to put data in a memory

area outside of the boundaries of a buffer.

Common Consequences: Buffer overflows often can be used to
execute arbitrary code. Buffer overflows generally lead to
crashes.

⚫ STs build mental models, which
help us understand software
weaknesses.

⚫ Each ST is a human and machine
understandable representation
of:

1. The software faults that lead to a
weakness.

2. The resources that a weakness
affects.

3. The weakness attributes.

4. The consequences/failures resulting
from the weakness.

Semantic Templates (STs) –
Improve on CWEs, too

Parameters
Buffer

location
Access kind Access position

Boundary

exceeded

heap stack write read inside outside lower upper

119 - Improper

Restriction of

Operations

within Bounds of

Buffer

√ √ √ √ √ √ √

120 - Buffer

Copy without

Checking Size

of Input

√ √ √ √ √ √

121 - Stack

Overflow
√ √ √ √ √

122 - Heap

Overflow
√ √ √ √ √

123 - Write-

what-where

Condition
√ √ √ √ √

124 - Buffer

Underwrite
√ √ √ √ √

125 - Out-of-

bounds read
√ √ √ √ √

126 - Buffer

Overread
√ √ √ √ √

127 - Buffer

Underread
√ √ √ √ √

WEAKNESS

ACCESS AND

OUT-OF-BOUNDS

READ #125, #126,

#127, #786

ACCESS AND OUT-

OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN

OPERATIONS WITHIN THE

BOUNDS OF A MEMORY

BUFFER

#119

IMPROPER-ACCESS-OF-

INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-

AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-

BUFFER-SIZE-

CALCULATION

#131

INTEGER

OVERFLOW

#190 #680
OFF-BY-

ONE

#193

INCORRECT-

CALCULATION

#682

IMPROPER-

INPUT-

VALIDATION

#20

INTEGER

UNDERFLOW

#191 RETURN OF POINTER

VALUE OUTSIDE OF

EXPECTED RANGE

#466

IMPROPER

VALIDATION OF

ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT

CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')

#120

WRITE-WHAT-WHERE

CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED

#121

ARRAY

#129
HEAP-BASED

#122

MEMORY-

BUFFER

#119

BUFFER

#119

INDEXABLE-

RESOURCE

#118PART-OF

INDEX

(POINTER #466

INTEGER #129)

PART-OF

IMPROPER

HANDELING OF

EXTRA VALUES

#231

USE OF DANDEROUS

FUNCTIONS

#242
API ABUSE

#227
IMPROPER NULL

TERMINATION

#170

IMPROPER USE OF

FREED MEMORY

#415 #416

MISSING

INITIALIZATION

#456SIGN

ERRORS

#194 #195

#196

STRING

MANAGEMENT

API ABUSE

785 #134 #251

UNCONTROLLED

MEMORY

ALLOCATION

#789

INFORMATION

LOSS OR

OMMISSION

#199 #221

POINTER

ERRORS

#467 #468

INTEGER

COERCION

ERROR

#192

IMPROPER HANDLING OF

LENGTH PARAMETER

INCONSISTENCY

130

IS-A

WEAKNESS

ACCESS AND

OUT-OF-BOUNDS

READ #125, #126,

#127, #786

ACCESS AND OUT-

OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN

OPERATIONS WITHIN THE

BOUNDS OF A MEMORY

BUFFER

#119

IMPROPER-ACCESS-OF-

INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-

AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-

BUFFER-SIZE-

CALCULATION

#131

INTEGER

OVERFLOW

#190 #680
OFF-BY-

ONE

#193

INCORRECT-

CALCULATION

#682

IMPROPER-

INPUT-

VALIDATION

#20

INTEGER

UNDERFLOW

#191 RETURN OF POINTER

VALUE OUTSIDE OF

EXPECTED RANGE

#466

IMPROPER

VALIDATION OF

ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT

CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')

#120

WRITE-WHAT-WHERE

CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED

#121

ARRAY

#129
HEAP-BASED

#122

MEMORY-

BUFFER

#119

BUFFER

#119

INDEXABLE-

RESOURCE

#118PART-OF

INDEX

(POINTER #466

INTEGER #129)

PART-OF

IMPROPER

HANDELING OF

EXTRA VALUES

#231

USE OF DANDEROUS

FUNCTIONS

#242
API ABUSE

#227
IMPROPER NULL

TERMINATION

#170

IMPROPER USE OF

FREED MEMORY

#415 #416

MISSING

INITIALIZATION

#456SIGN

ERRORS

#194 #195

#196

STRING

MANAGEMENT

API ABUSE

785 #134 #251

UNCONTROLLED

MEMORY

ALLOCATION

#789

INFORMATION

LOSS OR

OMMISSION

#199 #221

POINTER

ERRORS

#467 #468

INTEGER

COERCION

ERROR

#192

IMPROPER HANDLING OF

LENGTH PARAMETER

INCONSISTENCY

130

IS-A

WEAKNESS

ACCESS AND

OUT-OF-BOUNDS

READ #125, #126,

#127, #786

ACCESS AND OUT-

OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN

OPERATIONS WITHIN THE

BOUNDS OF A MEMORY

BUFFER

#119

IMPROPER-ACCESS-OF-

INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-

AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-

BUFFER-SIZE-

CALCULATION

#131

INTEGER

OVERFLOW

#190 #680
OFF-BY-

ONE

#193

INCORRECT-

CALCULATION

#682

IMPROPER-

INPUT-

VALIDATION

#20

INTEGER

UNDERFLOW

#191 RETURN OF POINTER

VALUE OUTSIDE OF

EXPECTED RANGE

#466

IMPROPER

VALIDATION OF

ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT

CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')

#120

WRITE-WHAT-WHERE

CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED

#121

ARRAY

#129
HEAP-BASED

#122

MEMORY-

BUFFER

#119

BUFFER

#119

INDEXABLE-

RESOURCE

#118PART-OF

INDEX

(POINTER #466

INTEGER #129)

PART-OF

IMPROPER

HANDELING OF

EXTRA VALUES

#231

USE OF DANDEROUS

FUNCTIONS

#242
API ABUSE

#227
IMPROPER NULL

TERMINATION

#170

IMPROPER USE OF

FREED MEMORY

#415 #416

MISSING

INITIALIZATION

#456SIGN

ERRORS

#194 #195

#196

STRING

MANAGEMENT

API ABUSE

785 #134 #251

UNCONTROLLED

MEMORY

ALLOCATION

#789

INFORMATION

LOSS OR

OMMISSION

#199 #221

POINTER

ERRORS

#467 #468

INTEGER

COERCION

ERROR

#192

IMPROPER HANDLING OF

LENGTH PARAMETER

INCONSISTENCY

130

IS-A

WEAKNESS

ACCESS AND

OUT-OF-BOUNDS

READ #125, #126,

#127, #786

ACCESS AND OUT-

OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN

OPERATIONS WITHIN THE

BOUNDS OF A MEMORY

BUFFER

#119

IMPROPER-ACCESS-OF-

INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-

AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-

BUFFER-SIZE-

CALCULATION

#131

INTEGER

OVERFLOW

#190 #680
OFF-BY-

ONE

#193

INCORRECT-

CALCULATION

#682

IMPROPER-

INPUT-

VALIDATION

#20

INTEGER

UNDERFLOW

#191 RETURN OF POINTER

VALUE OUTSIDE OF

EXPECTED RANGE

#466

IMPROPER

VALIDATION OF

ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT

CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')

#120

WRITE-WHAT-WHERE

CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED

#121

ARRAY

#129
HEAP-BASED

#122

MEMORY-

BUFFER

#119

BUFFER

#119

INDEXABLE-

RESOURCE

#118PART-OF

INDEX

(POINTER #466

INTEGER #129)

PART-OF

IMPROPER

HANDELING OF

EXTRA VALUES

#231

USE OF DANDEROUS

FUNCTIONS

#242
API ABUSE

#227
IMPROPER NULL

TERMINATION

#170

IMPROPER USE OF

FREED MEMORY

#415 #416

MISSING

INITIALIZATION

#456SIGN

ERRORS

#194 #195

#196

STRING

MANAGEMENT

API ABUSE

785 #134 #251

UNCONTROLLED

MEMORY

ALLOCATION

#789

INFORMATION

LOSS OR

OMMISSION

#199 #221

POINTER

ERRORS

#467 #468

INTEGER

COERCION

ERROR

#192

IMPROPER HANDLING OF

LENGTH PARAMETER

INCONSISTENCY

130

IS-A

CAN PRE-CEDE

OCCURS IN

CAN PRECEDE

CAN

PRECEDE

CWE-119: Improper Restriction of Operations within the Bounds
of a Memory Buffer

Summary: The software performs operations on a memory
buffer, but it can read from or write to a memory location that is
outside of the intended boundary of the buffer.
Extended description: Certain languages allow direct addressing
of memory locations and do not automatically ensure that these
locations are valid for the memory buffer that is being
referenced. This can cause read or write operations to be
performed on memory locations that may be associated with
other variables, data structures, or internal program data. As a
result, an attacker may be able to execute arbitrary code, alter
the intended control flow, read sensitive information, or cause
the system to crash.

CWE-120: Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')

Summary: The program copies an input buffer to an output

buffer without verifying that the size of the input buffer is less

than the size of the output buffer, leading to a buffer overflow.

Extended Description: A buffer overflow condition exists when

a program attempts to put more data in a buffer than it can

hold, or when a program attempts to put data in a memory

area outside of the boundaries of a buffer.

Common Consequences: Buffer overflows often can be used to
execute arbitrary code. Buffer overflows generally lead to
crashes.

But SFP & ST Have Problems, Too

⚫ Software Fault Patterns (SFP):

✓ “Factor” weaknesses into parameters,

✓ But:

• don’t include upstream causes or consequences, and

• are based solely on CWEs.

⚫ Semantic Templates (ST):

✓ Collect CWEs into four general areas:

• Software-fault

• Weakness

• Resource/Location

• Consequences.

✓ But:

• are guides to aid human comprehension.

Need for Structured Approach

➢ Without accurate and precise classification and comprehension of all possible types of

software bugs, the development of reliable software will remain unnecessarily challenging.

➢ As a result newly delivered and legacy systems will continue having security holes despite

all the patching to correct errant behavior.

We are working on a good structure for bugs descriptions.

For analogies, let’s look at some

well-known organizational structures in science …

Periodic Table & Others to Describe Molecules

⚫ Greeks used the terms element and atom.
Aristotle: substances are a mix of Earth, Fire, Air, or Water.

⚫ Alchemists cataloged substances, such as alcohol, sulfur, mercury, and salt.

⚫ Periodic table reflects atomic structure & forecasts properties of missing elements.

(Source: Wikimedia Commons)

(Source: Reich Chemistry)

https://commons.wikimedia.org/w/index.php?curid=31017351
http://reich-chemistry.wikispaces.com/Ancient%20Time%20LG

Geographic Coordinate System

Geographic Coordinate System (Source: Wikipedia)

Specify Terrestrial Location with

Latitude, Longitude, and Elevation

Specify Terrestrial Location with Latitude, Longitude, and Elevation.

http://en.wikipedia.org/wiki/Geographic_coordinate_system

Precise Medical Language

Medical professionals have terms to precisely name muscles, bones, organs, conditions, diseases, etc.

The Bugs Framework (BF)
Software developer’s and tester’s “Best Friend”

The Bugs Framework (BF) is
a precise descriptive language for bugs.

What is the Bugs Framework (BF)?

⚫ It is a set of classes of faults (bad program states) caused by bugs.

⚫ A BF bug class comprises:

➢ Attributes that identify the software fault.

➢ Causes that bring about the fault.

➢ Consequences the fault could lead to.

➢ Sites in code where the fault might occur.

⚫ Causes and consequences as directed graphs.

⚫ BF uses precise definitions and terminology.

⚫ A factoring and restructuring of information in CWEs, SFPs, and STs and

classifications from NSA CAS, IDA SOAR, and SEI-CERT.

What is the Bugs Framework (BF)?

⚫ BF is descriptive, not prescriptive.

– It explains what happens. There’s not enough detail to usefully predict the result.

⚫ BF is language independent.

BF Classes

⚫ Injection (INJ), e.g.

✓ SQL injection

✓ OS injection.

⚫ Control of Interaction Frequency (CIF), e.g.

✓ Limit number of login attempts

✓ Only one vote per voter.

⚫ Buffer Overflow (BOF).

⚫ Faulty Operations (FOP).

⚫ Cryptography (CRY).

⚫ Authentication (ATN).

⚫ Authorization (AUT).

⚫ Information Exposure (IEX).

BF: Buffer Overflow (BOF)

Buffer Overflow is the best class to begin.

⚫ Our Definition:

The software accesses through an array a memory location
that is outside the boundaries of that array.

– This definition is clearer than CWE-119: Improper Restriction of Operations within the Bounds of a

Memory Buffer:

“The software performs operations on a memory buffer, but it can read from or write to a memory

location that is outside of the intended boundary of the buffer.”

⚫ Related CWEs, SFP and ST

✓ Related CWEs are CWE-119, CWE-120, CWE-121, CWE-122, CWE-123, CWE-124, CWE-125, CWE-
126, CWE-127, CWE-786, CWE-787, CWE-788.

✓ The related SFP cluster is SFP8 Faulty Buffer Access under Primary Cluster: Memory Access.

✓ The corresponding ST is the Buffer Overflow Semantic Template.

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/788.html
https://buildsecurityin.us-cert.gov/sites/default/files/Mansourov-SWFaultPatterns.pdf
http://faculty.ist.unomaha.edu/rgandhi/st/bufferoverflowtemplate.pdf

BOF Attributes

⚫ Often referred to as a “buffer,” an array is a contiguously allocated set of objects,
called elements.
✓ Has a definite size – a definite number of elements are allocated to it.

✓ Software should not use array name to access anything outside boundary of allocated elements.

✓ Elements are all of same data type and accessed by integer offsets.

⚫ If software can utilize array handle to access any memory other than allocated
objects, it falls into this class.

An array could be pictured as follows:

BOF Attributes – Access

• Access: Read, Write.

BOF Attributes – Boundary

• Access: Read, Write.

• Boundary – which end of the array is violated:

Below (before, under, or lower), Above (after, over, or upper).

BOF: Attributes – Location

• Access: Read, Write.

• Boundary: Below, Above.

• Location – what part of memory the array is allocated in:

Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text), etc.

return to stringToId()

return to getInvocation()

return to getOneElement()

BOF Attributes – Magnitude

• Access: Read, Write.

• Boundary: Below, Above.

• Location: Heap, Stack, BSS, Data, Code.

• Magnitude – how far outside the boundary the violation extends:

Small (just barely outside), Moderate (8 to dozens of bites), Far (e.g. 4000).

BOF Attributes – Data Size

• Access: Read, Write.

• Boundary: Below, Above.

• Location: Heap, Stack, BSS, Data, Code.

• Magnitude: Small, Moderate, Far.

• Data Size – how much data is accessed beyond the boundary:

Little, Some, Huge.

BOF Attributes – Reach

• Access: Read, Write.

• Boundary: Below, Above.

• Location: Heap, Stack, BSS, Data, Code.

• Magnitude: Small, Moderate, Far.

• Data Size: Little, Some, Huge.

• Reach – one-by-one or arbitrary:

Continuous, Discrete.

BOF: Causes

There are only two proximate

causes of BOF:

• Data Exceeds Array

• Wrong Index / Pointer

Out of Range.

Access:

✓Read

✓Write

Boundary:

✓Below

✓Above

Location:

✓Heap

✓Stack

Magnitude:

✓Small

✓Moderate

✓Far

Data Size:

✓Little

✓Some

✓Huge

Reach:

✓Continuous

✓Discrete

No NULL

Termination

Wrong Index / Pointer

Out of Range

Data Exceeds Array

Array Too Small

Too Much Data

Input Not

Checked Properly

Incorrect Calculation

Off By One

Incorrect

Argument

Missing

Factor

Attributes

Incorrect

Result

Result fault:

✓Int Overflow

✓Int Underflow

✓Int Coercion

✓etc.

Operator:

Operand error:

Data type:

FOP

Incorrect

Conversion

Causes

BOF: Consequences

Shows what could

happen due to the fault.

BOF: Causes, Attributes, and Consequences

Access:

✓Read

✓Write

Boundary:

✓Below

✓Above

Location:

✓Heap

✓Stack

Magnitude:

✓Small

✓Moderate

✓Far

Data Size:

✓Little

✓Some

✓Huge

Reach:

✓Continuous

✓Discrete

No NULL

Termination

Wrong Index /

Pointer Out of Range

Data Exceeds Array

Array Too Small

Too Much Data

Incorrect

Conversion

Input Not

Properly Checked

Causes ConsequencesAttributes

Incorrect

Result

Result fault:

✓Int Overflow

✓Int Underflow

✓Int Coercion

✓etc.

Operator:

Operand error:

Data type:

FOP

Incorrect Calculation

Off By One

Incorrect

Argument

Missing

Factor

System Crash

Program Crash

Incorrect Results

Altered Control Flow

Resource Exhaustion

Denial Of

Service

Confidentiality/Authentication/

Authorization/Integrity Loss

Information

Exposure/Change/Loss
Arbitrary Code

Execution

Credentials

Compromise

Account Access

Admin Server Access/

Complete Host TakeoverACI

BOF: Sites

• Site: location in code that a fault may occur. Places to check for this bug.

• Buffer Overflow may occur at:

✓ use of [] operator in C

✓ use of unary * operator with arrays in C

✓ use of string library functions, such as strcpy() or strcat().

BOF: Example 1 – BF Explains Techniques

⚫ Canaries

➢ Extra memory above and below an array with unusual values, e.g., 0xDEADBEEF.

➢ Useful with attributes:

• Write Access

• Small Magnitude.

⚫ Address Space Layout Randomization (ASLR)

➢ Allocate arrays randomly about memory.

➢ Useful with attributes:

• Heap Location

• Stack Location – limited.

⚫ xxxRead-only pages

⚫ xxx(others from BOF paper)

BOF: Example 2 (Heartbleed)

32

(Source: http://xkcd.com/1354)

http://xkcd.com/1354

CVE-2014-0160 (Heartbleed): “The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1
before 1.0.1g do not properly handle Heartbeat Extension packets, which allows remote attackers
to obtain sensitive information from process memory via crafted packets that trigger a buffer over-
read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the
Heartbleed bug."

[1] The MITRE Corporation, CVE Common Vulnerabilities and Exposures, CVE-2014-0160.

BOF: Example 2 (Heartbleed)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160

Heartbleed description using BOF taxonomy:

• Input Not Checked Properly leads to
• Data Exceeds Array (specifically Too Much Data),
• where a Huge number of bytes
• are Read from the Heap
• in a Continuous reach
• After the array end,
• which may be exploited for Exposure of Information

that had not been cleared (CWE-226).

CVE-2014-0160 (Heartbleed): “The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do
not properly handle Heartbeat Extension packets, which allows remote attackers to obtain sensitive
information from process memory via crafted packets that trigger a buffer over-read, as demonstrated by
reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug."

BOF: Example 2 – BF Description

h a t \0 k e y = 1 4 8 3 5 0 3 8 I s a b e

Information

Exposure

Sensitive

Info Uncleared Before

Release

No NULL

Termination

Wrong Index / Pointer

Out of Range

Data Exceeds Array

Array Too Small

Too Much Data

Resource Exhaustion

Incorrect

Conversion

Information Change/Loss

Arbitrary Code Execution

System Crash

Program Crash

Denial Of

Service

Input Not

Checked Properly

Incorrect Calculation

Off By One

Integer

Underflow

Integer Overflow

Wrap-around

Integer

Coercion

Incorrect

Argument

Missing

Factor
Incorrect Results

Altered Control Flow

Access:

✓Read

✓Write

Boundary:

✓Below

✓Above

Location:

✓Heap

✓Stack

Magnitude:

✓Small

✓Far

Data Size:

✓Little

✓Huge

Reach:

✓Continuous

✓Discrete

BOF: Example 2 (Heartbleed)

h a t \0 k e y = 1 4 8 3 5 0 3 8 I s a b e

BF: BOF Exercises

Use BF to describe known software vulnerabilities or to identify gaps in existing repositories:

1) Ghost: BOF → CVE-2015-0235

2) Chrome: BOF → CVE-2010-1773

3) CWE gaps: BOF → Refactoring CWEs

BOF: Exercise 1 (Ghost)

Ghost: CVE-2015-0235

https://samate.nist.gov/BF/Tutorial.docx

https://samate.nist.gov/BF/Tutorial.docx

BOF: Exercise 1 (Ghost) – CVE-2015-0235

Create a BF description of CVE-2015-0235:

1. Examine the listed below CVE description, references, and source code excerpts with the bug
and the fix.

2. Analyze the gathered information and come up with a BF description utilizing the BOF
taxonomy (causes, attributes, and consequences).

CVE-2015-0235 (Ghost): “Heap-based buffer overflow in the __nss_hostname_digits_dots
function in glibc 2.2, and other 2.x versions before 2.18, allows context-dependent attackers to
execute arbitrary code via vectors related to the (1) gethostbyname or (2) gethostbyname2
function, aka GHOST.” [6]

[6] The MITRE Corporation, CVE Common Vulnerabilities and Exposures, CVE-2015-0235.

[7] Openwall, bringing security into open environment, Qualys Security Advisory CVE-2015-0235.

[8] Qualys Security Advisory CVE-2015-0235.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0235
http://www.openwall.com/lists/oss-security/2015/01/27/9
https://www.qualys.com/2015/01/27/cve-2015-0235/GHOST-CVE-2015-0235.txt

BOF: Exercise 1 – Source Code

BOF: Exercise 1 – Analysis

The following analysis is based on information in [6,7,8].

• The number of bytes that can be overwritten is sizeof (char *), which is 4 bytes on a 32 bit
machine, and 8 bytes on a 64 bit machine.

• In a calculation of the size needed to store certain data, the size of a char pointer is missing,
resulting in array too small.

• Buffer over write is done by strcpy (continuous reach).

• Qualys developed an attack on the Exim mail server, exploiting this vulnerability, as proof of
concept.

• This attack uses an initial buffer overwrite to enlarge the number in the size field of a portion
of memory that is available for the next allocation.

• This modification enables a subsequent overwrite that enables write-anything-anywhere,
which in turn enables overwriting Exim’s Access Control Lists, which in turn enables arbitrary
code execution.

https://samate.nist.gov/BF/Examples/BOF.html#ref

BOF: Exercise 1 – Solution

Ghost — gethostbyname buffer overflow is:

• Incorrect Calculation, (specifically Missing Factor) leads to

• Data Exceeds Array (specifically Array Too Small),

• where a Moderate number of bytes

• are Written to the Heap

• in a Continuous reach

• After the array end,

• which may be exploited for Arbitrary Code Execution,
eventually leading to Denial Of Service.

BOF: Exercise 2 (Chrome)

Chrome: CVE-2010-1773

https://samate.nist.gov/BF/Tutorial.docx

https://samate.nist.gov/BF/Tutorial.docx

BOF: Exercise 2 (Chrome) – CVE-2010-1773

Create a BF description of CVE-2010-1773:
1. Examine the listed below CVE description, references, and source code excerpts with bug and fix.
2. Analyze the gathered information and come up with a BF description utilizing the BOF taxonomy.

CVE-2010-1773 (Chrome WebCore): “Off-by-one error in the toAlphabetic function in
rendering/RenderListMarker.cpp in WebCore in WebKit before r59950, as used in Google Chrome before
5.0.375.70, allows remote attackers to obtain sensitive information, cause a denial of service (memory
corruption and application crash), or possibly execute arbitrary code via vectors related to list markers for
HTML lists, aka rdar problem 8009118.” [9]

[9] The MITRE Corporation, CVE Common Vulnerabilities and Exposures, CVE-2010-1773.

[10] Robin Gandhi, Buffer Overflow Semantic template CVE-2010-1773.

[11] Tracker, Issue 44955.

[12] chromium, Diff of /branches/WebKit/375/WebCore/rendering/RenderListMarker.cpp. Revision 48099.

[13] chromium, Contents of /branches/WebKit/375/WebCore/rendering/RenderListMarker.cpp. Revision 44321.

[14] chromium, Contents of /branches/WebKit/375/WebCore/rendering/RenderListMarker.cpp. Revision 48100.

[15] webkit, Fix for Crash in WebCore::toAlphabetic() while running MangleMe -and corresponding-

https://bugs.webkit.org/show_bug.cgi?id=39508. Reviewed by Darin Adler.

[16] Hat Bugzilla – Bug 596500- (CVE-2010-1773) CVE-2010-1773 WebKit: off-by-one memory read out of bounds vulnerability in

handling of HTML lists.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1773
http://faculty.ist.unomaha.edu/rgandhi/st/CVE-2010-1773.pdf
https://bugs.chromium.org/p/chromium/issues/detail?id=44955
https://src.chromium.org/viewvc/chrome/branches/WebKit/375/WebCore/rendering/RenderListMarker.cpp?r1=48100&r2=48099
https://src.chromium.org/viewvc/chrome/branches/WebKit/375/WebCore/rendering/RenderListMarker.cpp?revision=48099
https://src.chromium.org/viewvc/chrome/branches/WebKit/375/WebCore/rendering/RenderListMarker.cpp?annotate=48100#l104
http://trac.webkit.org/changeset/59950
http://trac.webkit.org/changeset/59950
https://bugzilla.redhat.com/show_bug.cgi?id=596500
https://bugzilla.redhat.com/show_bug.cgi?id=596500

BOF: Exercise 2 – Source Code

BOF: Exercise 2 – Analysis

The following analysis is based on information in [9-16].

⚫ The software reads in a loop from an array, where the sequence of indices of array elements read is
neither necessarily monotonic nor necessarily having a fixed distance between consecutive elements.

⚫ That index should be the remainder obtained by dividing an integer by an integer.

⚫ The software subtracts 1 from that remainder, which is wrong, and can result in the index being equal
to -1, leading to reading from an address that is below the beginning of the array by 1.

⚫ Consequences are mentioned in [10], and [16] includes "An off by one memory read out of bounds
issue exists in WebKit's handling of HTML lists. Visiting a maliciously crafted website may lead to an
unexpected application termination or the disclosure of the contents of memory.“

BOF: Exercise 2 – Solution

BF Description:

Chrome WebCore — render buffer overflow is:
• Incorrect Calculation, (specifically Off By One) leads to
• a Wrong Index,
• where a Small number of bytes
• are Read from the Heap
• in a Discrete reach
• Before the array start,
• which may be exploited for Information Exposure, Arbitrary Code Execution or Program Crash,

leading to Denial Of Service.

BOF: Exercise 3

CWE Gaps: Refactoring BOF CWEs

https://samate.nist.gov/BF/Tutorial.docx

https://samate.nist.gov/BF/Tutorial.docx

Attributes Access Boundary Location Reach

read write lower upper heap stack continuous discrete

120

121

122

123

124

125

126

127

786

787

788

805

823

BOF: Exercise 3 (Refactoring CWEs)

CWE-120: Buffer Copy without Checking Size of Input
The program copies an input buffer to an output buffer without
verifying that the size of the input buffer is less than the size of
the output buffer, leading to a buffer overflow
CWE-121: Stack-based Buffer Overflow
CWE-122: Heap-based Buffer Overflow
CWE-123: Write-what-where Condition
CWE-124: Buffer Underwrite (’Buffer Underflow')
CWE-125: Out-of-bounds Read
CWE-126: Buffer Over-read
CWE-127: Buffer Under-read
CWE-786: Access of Memory Location Before Start of Buffer
CWE-787: Out-of-bounds Write
CWE-788: Access of Memory Location After End of Buffer
CWE-805: Buffer Access with Incorrect Length Value
CWE-823: Use of Out-of-range Pointer Offset

✓ ✓ ✓ ✓ ✓

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/823.html

BOF: Exercise 3 – Solution

CWEs refactored by
BOF attribute

Attributes Access Boundary Location Reach

read write lower upper heap stack continuous discrete

120 ✓ ✓ ✓ ✓ ✓

121 ✓ ✓ ✓ ✓

122 ✓ ✓ ✓ ✓

123 ✓

124 ✓ ✓

125 ✓ ✓ ✓

126 ✓ ✓

127 ✓ ✓

786 ✓ ✓ ✓

787 ✓ ✓ ✓

788 ✓ ✓ ✓

805 ✓ ✓ ✓ ✓

823 ✓ ✓ ✓ ✓ ✓ ✓ ✓

BF: Injection (INJ)

⚫ Our Definition:

Due to input with language-specific special elements, the software assembles a command
string that is parsed into an invalid construct.

In other words, the command string is interpreted to have unintended commands, elements or
other structures.

⚫ Related CWEs, SFPs and ST:

✓ CWEs related to INJ are CWE-74, CWE-75, CWE-77, CWE-78, CWE-80, CWE-85, CWE-87, CWE-
88, CWE-89, CWE-90, CWE-93,CWE-94, CWE-243, CWE-564, CWE-619, CWE-643, CWE-652.

✓ Related SFPs are SFP24 and SFP27 under Primary Cluster: Tainted Input, and SFP17 under Primary
Cluster: Path Resolution.

✓ The corresponding ST is the Injection Semantic Template.

https://cwe.mitre.org/data/definitions/74.html
https://cwe.mitre.org/data/definitions/75.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/80.html
https://cwe.mitre.org/data/definitions/85.html
https://cwe.mitre.org/data/definitions/87.html
https://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/90.html
https://cwe.mitre.org/data/definitions/93.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/243.html
https://cwe.mitre.org/data/definitions/564.html
https://cwe.mitre.org/data/definitions/619.html
https://cwe.mitre.org/data/definitions/643.html
https://cwe.mitre.org/data/definitions/652.html
http://faculty.ist.unomaha.edu/rgandhi/st/injectiontemplate.pdf

INJ: Causes, Attributes, and Consequences

BF: Control of Interaction Frequency (CIF)

⚫ Our Definition:

The software does not properly limit the number of repeating interactions per specified unit.

E.g. failed logins per day, one vote per voter per election (more for certain races!), maximum
number of books checked out at once, etc. Interactions in software could be per event or per
user.

This class shows that we must acknowledge outside or local “policies”.

⚫ Related CWEs, SFPs and ST:

✓ CWEs related to CIF are CWE-799, CWE-307, CWE-837.

✓ The related SFP cluster is SFP34 Unrestricted Authentication under the Primary Cluster:
Authentication.

https://cwe.mitre.org/data/definitions/799.html
https://cwe.mitre.org/data/definitions/307.html
https://cwe.mitre.org/data/definitions/837.html

CIF: Causes, Attributes, and Consequences

BF: Faulty Operation (FOP)

⚫ Definition:

Operations in the software produce an unexpected result due to range violation or conversion
between primitive types.

This is integer overflow, underflow, wrap around, divide by zero, negative shift, signed/unsigned
conversion, etc. Pointer arithmetic is not included.

The model is that an operation causes (implicit) conversion of its operands’ values, then the
operation is performed. (The C cast is an explicit conversion then a null (identity) operator.
Argument passing is implicit conversion then null.)

⚫ Related classes.

✓ Related CWEs are CWE-128, CWE-190, CWE-191, CWE-192, CWE-194, CWE-195, CWE-196, CWE-197,
CWE-369, and CWE-681.

✓ SEI CERT Rule is Rule 04. Integers (INT), INT31-C, INT32-C, INT33-C, INT34-C, INT35-C, and INT36-C.

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html
https://cwe.mitre.org/data/definitions/196.html
https://cwe.mitre.org/data/definitions/197.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/681.html
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=270

FOP Attributes – Result Fault

• Result Fault: value becomes small, large, undefined, etc.

 what is wrong with the result

FOP Attributes – Operator

• Result Fault: value becomes small, large, undefined, etc.

• Operator: arithmetic (e.g. +, /, %, --), relational (e.g. <, !=), logical (&&, ||,

and !), bitwise (&, |, ~, ^, >>, and <<), conditional (?:), assignment (e.g. =,

+=), explicit conversion (cast), and argument passing in a function call.

 Pointer arithmetic is not included because it mimics array accesses. Note

that only additive and comparison operations (e.g. +, -, <) are defined for

pointers. That is, expressions like pointer/int and pointer+pointer are

not defined.

FOP Attributes – Operand Error

• Result Fault: value becomes small, large, undefined, etc.

• Operator: arithmetic (e.g. +, /, %, --), relational (e.g. <, !=), logical (&&, ||,

and !), bitwise (&, |, ~, ^, >>, and <<), conditional (?:), assignment (e.g. =,

+=), explicit conversion (cast), and argument passing in a function call.

• Operand Error: mismatched data types, value too big, range error, etc.

 This is typically a relationship between operands of the operator, not just the

characteristic of one operand.

FOP Attributes – Data Type

• Result Fault: value becomes small, large, undefined, etc.

• Operator: arithmetic (e.g. +, /, %, --), relational (e.g. <, !=), logical (&&, ||,

and !), bitwise (&, |, ~, ^, >>, and <<), conditional (?:), assignment (e.g. =,

+=), explicit conversion (cast), and argument passing in a function call.

• Operand Error: mismatched data types, value too big, range error, etc.

• Data Type: int, float, unsigned, etc.

 This is additional description. For instance, mismatched data types could be

long int to short.

FOP: Causes and Consequences

Result Fault:

✓too small, too

big, undefined

Operator:

✓+ -- * %

> != || ^

= (cast) etc.

Operand Error:

✓mismatched

data type, value

too big, range

error, etc.

Data Type:

✓Iint, unsigned,

float, etc.

Input Not

Checked Properly

AttributesCauses

Programmer

Error

Consequences

Resource Exhaustion

Program Crash

Denial Of

Service

Incorrect Results

Altered Control Flow

Infinite Loop

Wrong Index / Pointer

Out of Range

Data Exceeds Array

Array Too Small

Too Much Data

Access:

✓Read

✓Write

Boundary:

Location:

Magnitude:

Data Size:

Reach:

BOF

BF: Cryptography (CRY)

⚫ Our Definition:

The software does not properly encrypt/decrypt, verify, or manage keys for data (that has) to
be securely stored/transferred.

_ENC: The software does not properly transform sensitive data (plaintext) into
unintelligible form (ciphertext) using cryptographic algorithm and key(s).

_DEC: The software does not properly transform ciphertext into
plaintext using cryptographic algorithm and key(s).

_VRF: The software does not properly sign message, check
and prove sender, or assure message is not altered.

_KMN: The software does not properly generate, store,
distribute, use, or destroy cryptographic keys (keying material).

⚫ Related CWEs and SFPs:

✓ CWEs related to CRY are CWE-311, CWE-325, CWE-327, CWE- 261, CWE-322, CWE-323, CWE-324,
CWE-326, CWE-347, CWE-312 (incl. 313-318), CWE-256, CWE-257, CWE-295, CWE-296, CWE-321,
CWE-329, CWE-780

✓ Related SFPs are SFP 17.1 and SFP 17.2 under Primary Cluster: Cryptography.

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/261.html
https://cwe.mitre.org/data/definitions/322.html
https://cwe.mitre.org/data/definitions/323.html
https://cwe.mitre.org/data/definitions/324.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/347.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/256.html
https://cwe.mitre.org/data/definitions/257.html
https://cwe.mitre.org/data/definitions/295.html
https://cwe.mitre.org/data/definitions/296.html
https://cwe.mitre.org/data/definitions/321.html
https://cwe.mitre.org/data/definitions/329.html
https://cwe.mitre.org/data/definitions/780.html

Cryptographic Process:

✓ Encryption (_ENC)/

Decryption (_DEC)

✓ Verification (_VRF)

✓ Key Management (_KMN)

Data: Process Specific

Data State:

✓ Stored

✓ Transferred

Operation: Process Specific

Causes ConsequencesAttributes

Process Specific Causes

Process Specific

Consequences

Improper Cryptographic Algorithm

IEX

Missing Inadequate Weak Risky/Brocken

Modification of Cryptographic Algorithm

Improper Cryptographic Algorithm (incl. Post-Quantum):
• Missing (at all, cryptographic step)
• Inadequate -- theoretically sound, but not strong enough for required

level of protection
• Weak → prone to CPA, CCA
• Risky/Broken (as a whole, cryptographic step)

(ex. DES now insufficient for many applications → replaced with AES)

Modification of Cryptographic Algorithm
• Remove//modify cryptographic step
• Add cryptographic step

Cryptographic Process:
✓ _ENC/_DEC – needs _KMN
✓ _VRF - recursive _KMN, _VRF
✓ _KMN - recursive CRY, _KMN, _ENC, _VRF

Data State:
✓ Stored in:

• File: ini, temp, configuration, log (server/debug/cleanup log), attachment to email, login
buffer, executable, backup (.~bk), core dump, access control list, private data index

• Directories (Web root, FTP root, CVS repository), Disk
• Registry
• Cookie (– incl. Persistent Cookies)
• Source Code (incl. comments)
• GUI, Environmental Variable

✓ Transferred:
• Between Processes
• Over Network

Possible (attacks) → Man in the middle
(MITM):
✓ Factoring keys
✓ Spoofing messages
✓ Replay instructions
✓ Brute force attack
✓ Timing attack
✓ CPA, CCA

BF: Cryptography (CRY)

CRY: The software does not properly encrypt/decrypt, verify, or manage keys for data (that has) to be securely stored/transferred.

http://csrc.nist.gov/groups/ST/post-quantum-crypto/

ACI

Sensitive Data:

✓ ATN> Credentials

✓ System Data

✓ State Data

✓ Cryptographic Data

✓ Digital Documents

Data State = CRY> DataState

Algorithm:

✓ Symmetric

✓ Asymmetric

Operation - Security Service(s):

✓ Confidentiality

✓ ~ATN: Integrity

✓ ~ATN> Identity

IEX of

Sensitive Data

_KMN Failure

CRY> Improper

Cryptographic Algorithm

Know Private/Secret Key

Causes ConsequencesAttributes

Cryptography (CRY): _ENC/ _DEC

_ENC: The software does not properly transform sensitive data (plaintext) into unintelligible form (ciphertext) using cryptographic algorithm and
key(s).
_DEC: The software does not properly transform ciphertext into plaintext using cryptographic algorithm and key(s).

Algorithm (Key Schema):

o Symmetric (Secret) Key – one key (e.g. Serpent, AES, IDEA, Blowfish)

o Asymmetric (Public) Key – two keys: public, private (e.g. D–H, DSA, RSA) -- Key

Size

(Failed) Operation – Security Service(s):

o Confidentiality (sensitive data)

o ~Integrity Authentication*

o ~Identity Authentication*

* only for some specific modes of encryption

Sensitive Data (Secret - confidential):
✓ ATN> Credentials
✓ System Data (configurations, logs, Web

usage)
✓ Cryptographic Data (hashes, keys, keying

material)
✓ Digital Documents

ATN> Credentials:
✓ Password, Key
✓ Token, PIV Card , Digital

Certificate
✓ Biometrics

Causes ConsequencesAttributes

Cryptography (CRY): _VRF

_VRF: The software does not properly sign message, check and prove sender, or assure message is not altered.
 “Check” is for identity authentication, “prove” is for signer non-repudiation, “alter” is for integrity authentication.

Data (confidential or not, needs verification):
✓ Secret (confidential) (Cryptographic hashes, secret keys, keying material)
✓ Public (Signed Contract, documents, public keys)

Algorithm(s):

✓ Hash Function + RND (PRNG) - for Integrity Authentication → no Keys

✓ MAC (with unique keys per pair of users) -- recursive _KMN, _VRF → one Key (Symmetric/Secret Key Algorithm)

for Integrity Authentication, Identity Authentication (algorithms for authentication code generation and message verification = generate key, sign ← get tag for key and message, verify

by tag and key)

✓ Digital Signature -- recursive _KMN, _VRF → two keys (Asymmetric/Public Key Algorithm)

for Integrity Authentication, Identity Authentication, Signer Non-Repudiation (algorithms for key generation, signature generation, and signature verification)

(Failed) Operation -- Security Service(s):

✓ Data/Keys Integrity Authentication

✓ Source Authentication: Identity Authentication, Signer Non-Repudiation

ACI

Data:

✓ Secret

✓ Public

Data State = CRY> DataState

Algorithm:

✓ Hash Function + RND

✓ MAC

✓ Digital Signature

Operation -- Security Service(s):

✓ ATN> Security Service(s)

RND: Inadequate/

Predictable

Unverified

Keys/Keying Material

IEX of Private Key

CRY> Improper

Cryptographic Algorithm

Unverified

Data/Identity/Signer

_ENC/_KMN/_VRF Failure

ATN> Security Service(s):

• Data Integrity

Authentication

• Data Identity Authentication

• Signer Non-Repudiation

Causes ConsequencesAttributes

Cryptography (CRY): _KMN

_KMN: The software does not properly generate, store, distribute, use, or destroy cryptographic keys (keying material).

ACI

Data:

✓ Cryptographic

Data State = CRY>DataState

Algorithm:

✓ Hash Function + RND

✓ MAC

✓ Digital Signature

Operation:

✓ Generate

✓ Store

✓ Distribute

✓ Use

✓ Destroy
_ENC/_KMN/_VRF Failure

Unverified Keys/

Keying Material

IEX of Private/Secret Key/

Keying MaterialImproper Offer/ Use

of Weak Protocol

RND: Inadequate/ Predictable

CRY> Improper

Cryptographic Algorithm

Data:
✓ Cryptographic Data (hashes, keys, keying material)

Algorithm (for key generation):

o Hash Function + RND (PRNG) → no Keys

o MAC -- recursive _VRF → one Key (Symmetric/Secret Key Algorithm)

o Digital Signature -- recursive _VRF → two keys (Asymmetric/Public Key Algorithm)

(Failed) Operation:

o Generate – RND

o Store (Update, Recover) -- recursive CRY> State: Stored

o Distribute (Key establishment, transport, agreement, wrapping, encapsulation,

derivation, confirmation; Shared secret creation) -- recursive _KMN, _ENC

o Use

o Destroy

BF: Cryptography (CRY)

Cryptographic Process:

✓ Encryption (_ENC)/

Decryption (_DEC)

✓ Verification (_VRF)

✓ Key Management (_KMN)

Data: Process Specific

Data State:

✓ Stored

✓ Transferred

Operation: Process Specific

Causes ConsequencesAttributes

Process Specific Causes

Process Specific

Consequences

Improper Cryptographic Algorithm

IEX

Missing Inadequate Weak Risky/Brocken

Modification of Cryptographic Algorithm

ACI

Sensitive Data:

✓ ATN> Credentials

✓ System Data

✓ State Data

✓ Cryptographic Data

✓ Digital Documents

Data State = CRY> DataState

Algorithm:

✓ Symmetric

✓ Asymmetric

Operation - Security Service(s):

✓ Confidentiality

✓ ~ATN: Integrity

✓ ~ATN> Identity

IEX of

Sensitive Data

_KMN Failure

CRY> Improper

Cryptographic Algorithm

Know Private/Secret Key

ACI

Data:

✓ Secret

✓ Public

Data State = CRY> DataState

Algorithm:

✓ Hash Function + RND

✓ MAC

✓ Digital Signature

Operation -- Security Service(s):

✓ ATN> Security Service(s)

RND: Inadequate/

Predictable

Unverified

Keys/Keying Material

IEX of Private Key

CRY> Improper

Cryptographic Algorithm

Unverified

Data/Identity/Signer

_ENC/_KMN/_VRF Failure

ACI

Data:

✓ Cryptographic

Data State = CRY>DataState

Algorithm:

✓ Hash Function + RND

✓ MAC

✓ Digital Signature

Operation:

✓ Generate

✓ Store

✓ Distribute

✓ Use

✓ Destroy
_ENC/_KMN/_VRF Failure

Unverified Keys/

Keying Material

IEX of Private/Secret Key/

Keying MaterialImproper Offer/ Use

of Weak Protocol

RND: Inadequate/ Predictable

CRY> Improper

Cryptographic Algorithm

_ENC

_VRF

_KMN

ATN> Credentials:

✓ Password, Key

✓ Token, PIV Card , Digital Certificate

✓ Biometrics

ATN> Security Service(s):

• Data Integrity Authentication

• Data Identity Authentication

• Signer Non-Repudiation

CRY Exercises

Use BF to describe known software vulnerabilities or to identify gaps in existing repositories:

FREAK: CRY → CVE-2015-0204, CVE-2015-1637, CVE-2015-1067

 https://samate.nist.gov/BF/Tutorial.docx

https://samate.nist.gov/BF/Tutorial.docx

CRY: Exercise 1 (FREAK)

FREAK: CVE-2015-0204

 CVE-2015-1637

 CVE-2015-1067

CRY: Exercise 1 (FREAK) –
CVE-2015-0204, CVE-2015-1637, CVE-2015-1067

Create a BF description for FREAK – CVE-2015-0204, CVE-2015-1637, CVE-2015-1067:
1. Examine the listed below CVE descriptions, references, and source code excerpts with bug and fix.
2. Analyze the gathered information and come up with a BF description utilizing the CRY taxonomy.
CVE-2015-0204: “The ssl3_get_key_exchange function in s3_clnt.c in OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before
1.0.1k allows remote SSL servers to conduct RSA-to-EXPORT_RSA downgrade attacks and facilitate brute-force decryption by offering a
weak ephemeral RSA key in a noncompliant role, related to the "FREAK" issue. NOTE: the scope of this CVE is only client code based on
OpenSSL, not EXPORT_RSA issues associated with servers or other TLS implementations.” [17]

CVE-2015-1637: “Schannel (aka Secure Channel) in Microsoft Windows Server 2003 SP2, Windows Vista SP2, Windows Server 2008 SP2
and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1 does not
properly restrict TLS state transitions, which makes it easier for remote attackers to conduct cipher-downgrade attacks to EXPORT_RSA
ciphers via crafted TLS traffic, related to the "FREAK" issue, a different vulnerability than CVE-2015-0204 and CVE-2015-1067.” [18]

CVE-2015-1067: “Secure Transport in Apple iOS before 8.2, Apple OS X through 10.10.2, and Apple TV before 7.1 does not properly
restrict TLS state transitions, which makes it easier for remote attackers to conduct cipher-downgrade attacks to EXPORT_RSA ciphers
via crafted TLS traffic, related to the "FREAK" issue, a different vulnerability than CVE-2015-0204 and CVE-2015-1637.” [19]

[17] The MITRE Corporation, CVE Common Vulnerabilities and Exposures, CVE-2015-0204.

[18] The MITRE Corporation, CVE Common Vulnerabilities and Exposures, CVE-2015-1637.

[19] The MITRE Corporation, CVE Common Vulnerabilities and Exposures, CVE-2015-1067.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0204
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-1637
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-1067

CRY: Exercise 1 (FREAK) – Source Code

case SSL3_ST_SW_KEY_EXCH_B: case SSL3_ST_SW_KEY_EXCH_B:

alg_k = s->s3->tmp.new_cipher->algorithm_mkey; alg_k = s->s3->tmp.new_cipher->algorithm_mkey;

if ((s->options & SSL_OP_EPHEMERAL_RSA)

#ifndef OPENSSL_NO_KRB5

&& !(alg_k & SSL_kKRB5)

#endif)

s->s3->tmp.use_rsa_tmp=1;

else

s->s3->tmp.use_rsa_tmp=0; s->s3->tmp.use_rsa_tmp=0;

if (s->s3->tmp.use_rsa_tmp if (

#ifndef OPENSSL_NO_RSA

if (alg_k & SSL_kRSA) { if (alg_k & SSL_kRSA) {

if (!SSL_C_IS_EXPORT(s->s3->tmp.new_cipher)) {

al=SSL_AD_UNEXPECTED_MESSAGE;

SSLerr(SSL_F_SSL3_GET_SERVER_CERTIFICATE,SSL_R_UNEXPECTED_MESSAGE);

goto f_err;

}

if ((rsa=RSA_new()) == NULL) { if ((rsa=RSA_new()) == NULL) {

SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_MALLOC_FAILURE); SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_MALLOC_FAILURE);

Server

Client

If client ciphersuit is non-export then returned

by server RSA keys should be also non-export.

Therefore, handshake that offers export RSA

key (512 bits, which is weak) should be

abandoned by client.

The buggy code includes a handshake that

enables accepting a 512-bit RSA key.

The fix is adding code that checks whether

client ciphersuit is non-export and for

abandoning the handshake if this is the case.

CRY: Exercise 1 (FREAK) – Analysis

The following analysis is based on information in [17-23].

⚫ ClientHello: Client sends plaintext with no sensitive data (set of cipher suites client to use).
→ MITM intercepts that plaintext and changes it to request only Export RSA ciphersuite.

⚫ ServerHello: If configured to offer Export RSA, server responds sending its SSL certificate.

⚫ Send ServerKeyExchange: Server generates/retrieves 512-bit RSA key-pair, signs public key with its SSL certificate’s
private key to authenticate it to client, and sends the 512-bit key and signature.
→ MITM is watching exchange.

⚫ Receive ServerKeyExchange: Client receives ServerKeyExchange (with weak Export RSA key). If there was no bug in
OpenSSL, client should have said it did not ask for this and error out, shutting down the attack. However, due to the
bug in OpenSSL the client would accept and use this weak key for the rest of the handshake.

⚫ Pre-Master Secret: In both normal RSA and Export RSA, the Master Secret, used for symmetric encryption of all
messages in the rest of the connection, is generated using Pre-Master Secret and two nonces (ClientRandom and
ServerRandom sent in plaintext respectively in ClientHello and ServerHello). Client generates Pre-Master Secret as a
random string, encrypts it using server’s public key, and sends it to server. However, in Export RSA, server’s public key
is the 512-bit key from the ServerKeyExchange rather than from the server’s SSL certificate.
→ MITM can factor that weak 512-bit public key to obtain the RSA private key. (Normal RSA public key is min 1024
bits to rander such factoring infeasible, but 512-bits public key can be factored using $100 of AWS computing time.)
→ With the RSA private key MITM can decrypt Pre-Master Secret, and then use it and the nonces to find the Master
Secret (secret key used for symmetric encryption of transmitted data).
→ MITM now can decrypt, read, modify any massage between client and server, incl. passwords, credit cards info, ...

CRY: Exercise 1 (FREAK) – Analysis

Note: For Export RSA, a weaker RSA key-pair (512-bit) is required than required on the SSL certificate. If it was RSA, the
client would generate the Pre-Master Secret and encrypt it with server’s public key (min 1024-bit) from its SSL certificate.

[23] includes: "OpenSSL clients would tolerate temporary RSA keys in non-export ciphersuites. It also had an option
SSL_OP_EPHEMERAL_RSA which enabled this server side." and goes on to describe a response to the problem:
"Remove both options as they are a protocol violation.“

[20] Rob Heaton, The SSL FREAK vulnerability explained, http://robertheaton.com/2015/04/06/the-ssl-freak-
vulnerability

[21] Censys, The FREAK Attack, https://censys.io/blog/freak.
[22] StackExchange, Protecting phone from the FREAK bug,
http://android.stackexchange.com/questions/101929/protecting-phone-from-the-freak-bug/101966

[23] GitHub, openssl,
https://github.com/openssl/openssl/commit/ce325c60c74b0fa784f5872404b722e120e5cab0?diff=split

http://robertheaton.com/2015/04/06/the-ssl-freak-vulnerability/
http://robertheaton.com/2015/04/06/the-ssl-freak-vulnerability
http://robertheaton.com/2015/04/06/the-ssl-freak-vulnerability
https://censys.io/blog/freak
http://android.stackexchange.com/questions/101929/protecting-phone-from-the-freak-bug/101966
https://github.com/openssl/openssl/commit/ce325c60c74b0fa784f5872404b722e120e5cab0?diff=split

CRY: Exercise 1 (FREAK) – Solution

BF Description:

An inner _KMN CRY 1 leads to an inner _ENC CRY 2, which leads to an outer _ENC CRY 3.

1 Inner _KMN CRY: Client-accepted improper offer of weak protocol (SSL with Export RSA) from MITM-tricked server,
which generates 512-bit RSA key-pair, leads to IEX of transferred sensitive data (private key*).

2 Inner _ENC CRY: Known private key for asymmetric algorithm (RSA) leads to failed confidentiality security service,
decryption of transferred sensitive data (Pre-Master Secret**), and then IEX of other sensitive data (Master Secret***).

The inner CRYs only set up the secret key.

3 Outer _ENC CRY: Known secret key (Master Secret) for symmetric algorithm leads to failed confidentiality security
service, and decryption and IEX of transferred sensitive data (passwords, credit cards, etc.).

The outer CRY is the actual general data transmission.

CRY: Exercise 1 (FREAK) – Solution

* It is computationally feasible MITM to obtain the private key by factoring the public key for a 512-bit RSA key-pair. (In
RSA, asymmetry is based on the practical difficulty of factoring the product of two large prime numbers.)

** Knowing the private key MITM can obtain the Pre-Master Secret by message decryption [1]."

*** Knowing Pre-Master Secret, MITM can generate Master Secret (Shared Secret Key).

Client-accepted: client code based on OpenSSL.

MITM-tricked server: server code does not properly restrict TLS state transitions.

MITM -- man in the middle.

Note: What is cool about this example is that the consequence from the first CRY causes the second CRY, which consequences cause the
third CRY. The first inner _KMN CRY is a server bug, sending a weak key, (that the client did not ask for), intended for _KMN use by client
(encrypting Pre-Master Secret). The second inner CRY is a client bug, using that weak key to encrypt the Pre-Master Secret, and then
transmitting that weakly encrypted Pre-Master Secret over a network that is not secure.

https://en.wikipedia.org/wiki/RSA_(cryptosystem)

Next Steps: Bug Areas

⚫ Software Weaknesses Areas:

➢ Access:

✓ Authentication

✓ Authorization.

➢ Functionality:

✓ Expressions: Calculations, Comparisons, Functions

✓ Control Flow: Branching, Looping, Concurrency, Race Conditions

✓ Exceptions.

➢ Data (used, stored, transmitted):

✓ Memory (+ Initialization)

✓ Files & Directories

✓ Communications.

76

Upcoming: BF Access Classes

⚫ BF Classes related to Access:

✓ ATN (Authentication)

o Integrity Authentication

o Identity Authentication

o Origin Authentication?

✓ AUT (Authorization – often conflated with Access Control)

✓ CRY (Cryptography)

o _ENC (Encryption)

o _VRF (Verification)

o _KMN (Key Management)

✓ RND (Randomization)

✓ CIF (Control of Interaction Frequency)

✓ IEX (Information Exposure).

Upcoming: BF Functionality Classes

⚫ BF Classes related to Functionality:

✓ FOP (Faulty Operation) – Calculations, Comparisons, Functions, Cast
Integer Overflow, Divide by Zero, …

✓ FLO (Control Flow) – Branching, Looping (Switch without default, Infinite loop,...)

✓ INJ (Injection)

✓ EXC (Exception handling)
– Throw, Try, Catch

✓ CON (Concurrency)
– Deadlock, Starvation (unfair scheduling), Races, Locks, Synchronization, etc.

Upcoming: BF Data Classes

⚫ BF Classes related to Data:

✓ MEM (Memory+Initialization – data in use): Use after free, Memory leak.
- Memory is usually just a giant array, maybe with allocation and freeing.
- Memory is non-persistent.

• BOF (Buffer Overflow)

✓ STO (Storage/File System – data at rest)
- Storage is typically intricately structured, that is, with a file system. Access is largely by means of the file
system with all its names, permissions, links, etc.
- Storage is generally persistent - one thinks of files as lasting far longer than processes.

✓ NET (Network – data in transit)
- Network is significantly different from memory and storage.

Questions

https://samate.nist.gov/BF/

	Slide 1: The Bugs Framework (BF) “Hands-On” Software developer’s and tester’s “Best Friend”
	Slide 2: Introduction
	Slide 3: Outline
	Slide 4: Problems With Current Bug Descriptions
	Slide 5: CWEs – Gaps in Coverage
	Slide 6: CWEs – Too Detailed
	Slide 7: Software Fault Patterns (SFP) – Improve on CWEs
	Slide 8: Semantic Templates (STs) – Improve on CWEs, too
	Slide 9: Semantic Templates (STs) – Improve on CWEs, too
	Slide 10: But SFP & ST Have Problems, Too
	Slide 11
	Slide 12: Periodic Table & Others to Describe Molecules
	Slide 13: Geographic Coordinate System
	Slide 14: Precise Medical Language
	Slide 15
	Slide 16: What is the Bugs Framework (BF)?
	Slide 17: What is the Bugs Framework (BF)?
	Slide 18: BF Classes
	Slide 19: BF: Buffer Overflow (BOF)
	Slide 20: BOF Attributes
	Slide 21: BOF Attributes – Access
	Slide 22: BOF Attributes – Boundary
	Slide 23: BOF: Attributes – Location
	Slide 24: BOF Attributes – Magnitude
	Slide 25: BOF Attributes – Data Size
	Slide 26: BOF Attributes – Reach
	Slide 27: BOF: Causes
	Slide 28: BOF: Consequences
	Slide 29: BOF: Causes, Attributes, and Consequences
	Slide 30: BOF: Sites
	Slide 31: BOF: Example 1 – BF Explains Techniques
	Slide 32: BOF: Example 2 (Heartbleed)
	Slide 33: BOF: Example 2 (Heartbleed)
	Slide 34: BOF: Example 2 – BF Description
	Slide 35: BOF: Example 2 (Heartbleed)
	Slide 38: BF: BOF Exercises
	Slide 39: BOF: Exercise 1 (Ghost)
	Slide 40: BOF: Exercise 1 (Ghost) – CVE-2015-0235
	Slide 41: BOF: Exercise 1 – Source Code
	Slide 42: BOF: Exercise 1 – Analysis
	Slide 43: BOF: Exercise 1 – Solution
	Slide 44: BOF: Exercise 2 (Chrome)
	Slide 45: BOF: Exercise 2 (Chrome) – CVE-2010-1773
	Slide 46: BOF: Exercise 2 – Source Code
	Slide 47: BOF: Exercise 2 – Analysis
	Slide 48: BOF: Exercise 2 – Solution
	Slide 49: BOF: Exercise 3
	Slide 50: BOF: Exercise 3 (Refactoring CWEs)
	Slide 51: BOF: Exercise 3 – Solution
	Slide 52: BF: Injection (INJ)
	Slide 53: INJ: Causes, Attributes, and Consequences
	Slide 54: BF: Control of Interaction Frequency (CIF)
	Slide 55: CIF: Causes, Attributes, and Consequences
	Slide 56: BF: Faulty Operation (FOP)
	Slide 57: FOP Attributes – Result Fault
	Slide 58: FOP Attributes – Operator
	Slide 59: FOP Attributes – Operand Error
	Slide 60: FOP Attributes – Data Type
	Slide 61: FOP: Causes and Consequences
	Slide 62: BF: Cryptography (CRY)
	Slide 63: BF: Cryptography (CRY)
	Slide 64: Cryptography (CRY): _ENC/ _DEC
	Slide 65: Cryptography (CRY): _VRF
	Slide 66: Cryptography (CRY): _KMN
	Slide 67: BF: Cryptography (CRY)
	Slide 68: CRY Exercises
	Slide 69: CRY: Exercise 1 (FREAK)
	Slide 70: CRY: Exercise 1 (FREAK) – CVE-2015-0204, CVE-2015-1637, CVE-2015-1067
	Slide 71: CRY: Exercise 1 (FREAK) – Source Code
	Slide 72: CRY: Exercise 1 (FREAK) – Analysis
	Slide 73: CRY: Exercise 1 (FREAK) – Analysis
	Slide 74: CRY: Exercise 1 (FREAK) – Solution
	Slide 75: CRY: Exercise 1 (FREAK) – Solution
	Slide 76: Next Steps: Bug Areas
	Slide 77: Upcoming: BF Access Classes
	Slide 78: Upcoming: BF Functionality Classes
	Slide 79: Upcoming: BF Data Classes
	Slide 80: Questions

