The NIST
Bugs Framework (BF)

https://samate.nist.gov/BF/

ional itute of .
N Isr Cromdartls ondl yechnology Irena Bojanova
U.S. Department of Commerce

My Background -2 Quite Excited about BF NIST

® Ph.D. Dissertation —
Static Analysis, Simulation, and Verification of Formal Specifications:

® Fascinated by programming paradigms
e Developed formal specification languages

® BF - Dreams come true

e Existing Repositories:
o CWE
o CVE
o NVD
o KEV

e Example — Heartbleed

® The Bugs Framework (BF)
o Early Work
o Terminology
o Goals
o Features

e Potential Impacts

Existing Repositories

Commonly Used Repositories

® \Weaknesses:
CWE — Common Weakness Enumeration

e Vulnerabilities:
CVE — Common Vulnerabilities and Exposures
- over 18 000 documented in 2020

e Linking weaknesses to vulnerabilities — CWEs to CVEs:
NVD — National Vulnerabilities Database

® By priority for remediation — CVEs:
KEV — Known Exploited Vulnerabilities Catalog

https://cwe.mitre.org/
https://cve.mitre.org/
https://nvd.nist.gov/
https://www.cisa.gov/known-exploited-vulnerabilities-catalog

Repository Problems

1. Imprecise Descriptions — CWE & CVE

2. Unclear Causality — CWE & CVE

3. No Tracking Methodology — CVE

4. Gaps in Coverage — CWE

5. Overlaps in Coverage — CWE

6. No Tools — CWE & CVE

Problem #1: Imprecise Descriptions

e Example:

CWE-502: Deserialization of Untrusted Data:

The application deserializes untrusted data without
sufficiently verifying that the resulting data will be valid.

o Unclear what “sufficiently” means,

o “verifying that data is valid” is also confusing

Problems #2, #3: Unclear Causality, Tracking NIST

e Example:

CVE-2018-5907

Possible buffer overflow in msm_adsp stream_callback _put due to lack of input
validation of user-provided data that leads to integer overflow in all Android releases
(Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the Linux kernel.

— the NVD label is CWE-190

While the CWEs chain is:
CWE-20 > CWE-190 > CWE-119

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5907
http://cwe.mitre.org/data/definitions/190.html

Problems #4, #5: Gaps/Overlaps in Coverage

e Example:

CWEs coverage of buffer overflow by:
v’ Read/ Write
v" Over/ Under
v’ Stack/ Heap

Over Under Either End Stack Heap

Read CWE-127 CWE-126 CWE-125 + <+
: CWE-123
Write CWE-124 CWE-120 CWE-787+ CWE-121 CWE-122

Read/ Write CWE-786 CWE-788 + 4 4

The Bugs Framework
(BF)

Example:

CVE versus BF

Descriptions of
Heartbleed

Heartbleed (CVE-2014-0160)

CVE-2014-0160 The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat

Extension packets, which allows remote attackers to obtain sensitive information from process memory via crafted packets that
trigger a buffer over-read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug.

G [https:y//nvd.nist.gov/vuln/detail /{CVE-2014-0160

Weakness Enumeration CWE-119: Improper Restriction of Operations within the

Bounds of a Memory Buffer

CWE-119 Improper Restriction of Operations withi

Weakness ID: 119
Abstraction: Class
Structure: Simple

Presentation Filter: | Complete hd |

¥ Description

The software performs operations on a memory buffer, but it can read from or write to a
memory location that is outside of the intended boundary of the buffer.

¥ Extended Description

Certain languages allow direct addressing of memory locations and do not automatically ensure
that these locations are valid for the memory buffer that is being referenced. This can cause
read or write operations to be performed on memory locations that may be associated with
other variables, data structures, or internal program data.

As a result, an attacker may be able to execute arbitrary code, alter the intended control flow,
read sensitive information, or cause the system to crash.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160

Heartbleed (CVE-2014-0160)

CVE-2014-0160 The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat

Extension packets, which allows remote attackers to obtain sensitive information from process memory via crafted packets that
trigger a buffer over-read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug.

1448 dtlsl process heartbeat (SSL *s)

1449 { void *memcpy (void *dst, const void *src, size t n)
1450 unsigned char *p = &s->s3->rrec.datal0], *pl; {

1451 unsigned short hbtype; size t 1i; payload

1452 unsigned int payload; for (i=0; i<n; i++)

1453 unsigned int padding = 16; * (char *) dst++ = *(char *) src++;

1454 return dst;

1455 } bp pl

1456 hbtype = *p++;
1457 n2s (p, payload);
1458 | pl = p;

Tt Inconsistent Over Buffer
1465 if (hbtype == TLS1 HB REQUEST) Value Bounds Overflow
1466 {
1467 unsigned char *buffer, *bp; DVR MAD MUS
il'l 7 0 (Verify: (Bepositiqn, (Read, Pointer:
Missing, Data Pointer, Object, !
La7L (payload Size: Incon- O lEaek;
1472 . . Object, Size)
1473 length), Policy) sistent Value)
1474 buffer = OPENSSL malloc(l + 2 + payload + padding);
1475 bp = buffer;
1476
1477
1478 *bptt = TLSlHBRf?ONSE; Caused by the Bug Caused by ill-formed data
1479 s2n (payload, bp);

1480 memcpy (bp, pl, payload);

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160

Clear Causality in Heartbleed

Inconsistent Over Buffer

Overflow

Value Bounds Qverflo
MAD
(Vz\rlil: : (Reposition, MUsS
Missi \IID t Pointer, Object, (Read, Pointer: Information
|(ss;ni,)a; é Size: Incon- Over Bounds, Exposure
S . sistent Value, Object, Size)
length), Policy) Size)
Not Cleared
Object
MUS
(Clear: Missing,
Pointer, Object,
Size) Caused by the Bug

Caused by ill-formed data

The Failure — caused by final error(s)

BF Description of Heartbleed

Cause DVR Operation Consequence
Improper Operation: Verify Improper Data: Cause MUS Operation Consequence
Missing Inconsistent Value [lmproper Operation:]_/> Clear \[Memory Error:]
(for payload size) Missing Not Cleared Object
Attributes Attributes
Operation Data Operation Pointer Object
Mechanism: Source Code: Executioq» State: + Mechanism: Source Code: Execution Space: | Span: Location:
* Quantity * Codebase Space: * Transferred * Sequential . Codebase“’ e Userland * Huge * Heap
(d1_both.cand tl_lib.c) <+ Userland (via network)

Cause

MAD Operation

Consequence

Improper Size: Reposition Improper Pointer:
Inconsistent Value (for size Over Bounds
of s»s3-rrec.data[0])

Attributes
Operation Object
Mechanism: Source Code: Execution Space: | Location:
* Sequential * Codebase * Userland * Heap

(d1_both.c and tl_lib.c)

Cause

Information
Exposure

MUS Operation Consequence
Improper Pointer: Read Memory Error:
Over Bounds Buffer Overflow
The Bug (for s»s3-rrec.datal0])
Attributes
Operation Pointer Object
A Weakness Mechanism: Source Code: Execution Span: Location:
* Sequential * Codebase Space: * Huge | * Heap
The Failure

(d1_both.c and tl_lib.c) * Userland

BF Tool — Generated Machine-Readable
NIST

BF Heartbleed Description

CVE-2014-016...0verflow.bf & X

-|<Vulnerability Name="Buffer Overflow"=
- <Bug Type="_INP" Class="DVR"=>
<Cause Type="Improper Operation" Comment="">Missing</Cause>
<Operation Comment="">Verify</Operation>
<Consequence Type="Improper Data Value" Comment="for payload size">Inconsistent Value</Consequence>

- <Attributes>
- <Operation=>
<Attribute Type="Mechanism">Quantity</Attribute>
I <Attribute Type="Source Code">Codebase</Attribute>
<Att?ibute Type="Execution Space" Comment="" “J"ﬂj""‘:ﬁg;a;é;s Type="_MEM" Class="MUS">
</Operation>

<Cause Type="Improper Address" Comment="for s-s3-rrec.data[0])">0Over Bounds Pointer</Cause>
<Operation Comment="">Read</Operation>
<Consequence Type="Memory Error" Comment="">Buffer Overflow</Consequence>
- <Attributes>
= <Operation>
<Attribute Type="Mechanism">Sequential</Attribute>
<Attribute Type="Source Code">Codebase</Attribute>
<Attribute Type="Execution Space">Userland</Attribute>
</Operation>
- <Operand Name="Address">
<Attribute Type=“Span">Huge</Attributeﬂ
<Attribute Type="Location">Heap</Attribute>

- <Operand Name="Data"=
<Attribute Type="State" Comment=""=>Transfer
</Operand>
</Attributes>
</Bug>
- <Weakness Type="_MEM" Class="MAD">
<Cause Type="Improper Data Value" Comment="for siz
<Operation Comment="">Reposition</Operation>
<Consequence Type="Improper Address" Comment=""=>0Ove
- <Attributes>
- <Operation=>
<Attribute Type="Mechanism">Sequential</Att

: </0 d>
<Attribute Type="Source Code">Codebase</Att </Att£iE3:::>
<Attribute Type="Execution Space"=Userland< </Weakness>

</Operation>
- <Operand Name="Address"=
<Attribute Type="Location">Heap</Attribute>

= <Failure Type="_XXX" Class="IEX">
<Cause Type="Memory Error" Comment="">Buffer Overflow</Cause>
<Operation Comment="">IEX Ooperation</Operation>

</Qperand> <Consequence Type="Risk" Comment="">IEX Conseqeunce</Consequence>
</Attributes> iJFailures
</Weakness>

</Vulnerability>

Previously — Heartbleed (CVE-2014-0160) NiST

2016 IEEE International Conference on Software Quality, Reliability and Security

The Bugs Framework (BF):

TOW&I‘d S a “ Pe I‘i O d i C AS“d Approach to Expziiugs
Table” of Bugs

rena Bojanova, Paul E. Black, Yaacov Yesha, Yan Wu

April 9, 2015 NIST, BGSU

» Heartbleed buffer overflow is:
caused by Data Too Big
because of User Input not Checked Properly
where there was a Read that was After the End that was Far Outside
of a buffer in the Heap
which may be exploited for Information Exposure

Input not checked properly leads to too much data, where a
huge number of bytes are read from the heap in a continuous
reach after the array end, which may be exploited for
exposure of information that had not been cleared.,

The Bugs Framework
(BF)

Early Work

Problems with CWE, CVE, & CAPEC

They Know Your Weaknesse
Reintroducing Common Weaknes

Problems CWE, CVE, & CAPEC (cont.)

Towards a “Periodic
Table” of Bugs

Yan Wu, Bowling Green Stote University

ylond, Bo
ylond Univ

Formalizing Software Bugs

; Irena Bojanova

UMUC, NIST .
: ’ rena Bojanova, Paul E. Black, Yaacov Yesha, Yan Wu
April 9 — July 23, 2015 NIST, BGSU
Causes Consequences
12/08/201
. /08/2014 Buffer Overflow formadn
by answering Sxee basic quessons ecked Properl i g Xposure
L Introduction to Common Weakness — i » -~ e . Mizsing e e e %A‘Lt:;s: Information
Erumersion (WE CWE-128 in Z notation
- N Sesodeda ,I “ 3 X . —A. Incorrect \ Integer « Side:
AR o d N T \ ¥ Below (before or under), Above (after or over) Program
e e Depaniment of Deter) Systems hich the N \\ | — - Segment (memory area): / ‘cra’hq S
Tnteger Overflow ~ \ oL ¥ Heap, Stack, BSS (uninitialized data), Data (initialized). o
CWE-128: Wrap-around Error: “Wrap around errors occu] S ey Code (text) Sanis
is incremented past the maximum value for its type and th C e ™5~ \:::: st) el —

= Magnitude (how far outside):
v Minimal (just barely), Moderate, Far (e.g. 4000).

« Data Size (base may be inside, but large chunk of data
extends outside).

(Memory/CPU)

" . »
around" to a very small, negative, or undefined value.

Arbitrary Code
Execution

Wrong Index /
Pointer Out of Range

Incorrect
Conversion

MAX_INT: 7.

MIN_INT: 7. CVE-201 4- 1 60/ CAPEC = 540 in CSP Table 2. Buffer Overflow CWEs Attributes.

INT=={i-Z | MIN_INT<iAi<MAX_INT}
before after eitherend stack heap

BAD_INT-Z channel network 2; read 127 126 125
["BAD INT<MIN INTV MAX INT<BAD INT enum {payloadLength, payload, validPayload, invalidPayload}; write 124 120 123,787 121 122
- - - - Attacker () = network!payloadLength -> network!payload - eitherr/w 786 788
>network?payloadResponse->Attacker () ; .
S i add, mul: INT x INT > INT U {BAD_INT} CWE 126() = network?payloadlLength -> network?payload-> Where:))
- (payloadLengthIsEqualTopayloadSize->network!validPayload->CWE 126 () * access = elther read/write

Vi, 2 INT « addli, j) =1 i+ > MAX_INT then BAD_INTe [] payloadLengthIsNotEqualTopayloadSize->network!invalidPayload -> * outside = either before/below start or after/above
Vi, j: INT « mull(i, j) = if i*j > MAX_INT then BAD_INT e CWE 126());

System() = Attacker() ||| CWE_126();

Next BF Classes

2016 IEEE International Conference on Software Quality, Reliability and Security

The Bugs Framework (BF):
A Structured Approach to Express Bugs

Irena Bojanova

NIST
Gaithersburg, USA

Yaacov Yesha
NIST. UMBC
Gathersburg, USA; Baltimore, USA

Abstract—To achicve higher levels of assurance for digital
systems, we need to answer questions such as does this software
have bugs of these critical classes? Do two software assurance tools
find the same sct of bugs or dll’lcml complimentary sets? Can we

that a new que discovers all problems of this
type? To answer such questions, we need a vastly improved way to
describe classes of vulnerabilities and chains of failures. We
present the Bugs Framework (BF), which raises the current realm
of best efforts and useful heuristics. Our BF includes rigorous
definiti and (static) ib: of bug classes, along with their
related dynamic properties, such as proximate, secondary and
tertiary causes, consequences and sites. The paper discusses the
buffer overflow class, the injection class and the comtrol of
interaction frequency class, and provides examples of applying
our BF taxomomy to describe particular vulnerabilitics.

Keywords—saftware weaknesses; bug taxonomy; attacks.
L INTRODUCTION
The medical profession has an extensive, elaborate

vocabulary to precsely name muscles, bones, organs and
diseases. When a doctor says that a comatose patient has a left
temporal lobe epsdural bematoma, the intention is 10 enlighten,
not obfiscate. In the software profession, many efforts have
developed terms to discuss software, faults, failures and attacks,
such as the Common Weakness Enumeration (CWE) [1] and
Landwelr et. al. Taxonomy of Computer Program Secunty
Flaws [2], but much work remains.

We want w more accurately and peecisely define software
bugs or vulnerabilities. Consider that adding nary” values
around arrays detects some buffer overflows while using address
layout randomization mitigates others. A precise, orthogonal
nomenclature can state exactly which classes of buffer
overflows each approach handles. We can also clearly state the
classes of bugs that a tol can find and more easily determine if
two tools generally find the same set of bugs oe if they find
different, complimentary sets.

Dischimes Cestain tade sames and company peodects are mentioned in the
lod B mo case does sech idemificatos imply recommendation o
by the National Basseoee of Smndards ssd Technalogy (NIST),

o the purpose

oc docs &t imply that Shey are nacessarily She best avatlable

TR L50904127.5/16 $31.00 O X
DOL 101 1090QRS 2016 29

Paul E. Black
NIST
Ganthersburg, USA

Yan Wu
BGSL
Bowling Green, USA

The ancient Greeks used the terms element and atom, and
Aristotle proposed that all matier is a nmuxture of earth, ar, fire
or water. In the Middle Ages, alchemists made lisss of materials,
such as alcohol, sulfur, mercury and salt. Through centuries of
experimentation and development of scientific principles, we
now have Mendeleev's Periodic Table of Elements, see Fig. 1.
Just as the structure of the periodic table reflects the underlying
atomic structure, we are developing a taxonomy dictated by the
“natural” organization of software bugs, while using as stepping
stones known bugs enumerations, compendia and collections.

Over the course of hustory, science has developed many
different organizational structures. Linnaeus’ taxonomy
categorizes living things mto a hierarchy of Domam, Kingdom,
Phylum, Class, Order, Family, Genus and Species. [t allows
comprebension of the diversity of life forms and codifies

understanding that some animals are close in ther evolutionary
history. The Geographic Coordinate System specifies any
location on Earth using latitude, Jong tde and elevation. The
Dewey Decimal Classafication system allows new books and
whole new subjects 10 be placed in reasonable Jocations in a
library for easy retneval based on subject. Fingerprants are

2
[N 3
"
sisy Al
BRI R
Co.| i 00 2n | Ga
I ol
Len | P gdln
kAL 'K
oy L "
sael e 111 12 NS

el lon ol

Fig. 1. Periodic Tuble of Elements _Ln: 1 Levoisier 1789, L) Mea-
deleev 1869, 171 Deming Seaboeg 5, _Jup 10 2000, 10 20
By Sandbd - Wikimedia Cossmons., OC BY-SA 3.0

2017 IEEE 28th Annual Software Technology Conference (STC)

Cryptography Classes in Bugs Framework (BF):
Encryption Bugs (ENC), Verification Bugs (VRF),
and Key Management Bugs (KMN)

Irena Bojanova; Paul E. Black
NIST, Gaithersburg, USA
irena.bojanova(@nist.gov, paul black@nist.gov

Abs A

te, precise, and i itions of
software weaknesses (bugs) and clear descriptions of software
vulnerabilities are vital for building the foundations of
eybersecurity. The Bugs Framework (BF) comprises rigorous
ions and (static) attributes of bug classes, along with their
related dynamic properties, such as proximate, sccondary and
causes, consequences, and sites. This paper presents an
averview of previously developed BF classes and the new
cryptography related classes: Encryption Bugs (ENC),
Verification Bugs (VRF), and Key Management Bugs (KMN). We
analyze corresponding vulnerabilities and provide their clear
descriptions by applying the BF taxonomy. We also discuss the
lessons learned and share our plans for expanding BF.

Keywords—sof ; bug iy; attacks.
1. INTRODUCTION
Advances in scientific foundations of

cybersecurity rely on the availability of accurate,
precise, and unambiguous definitions of software
weaknesses (bugs) and clear descriptions of software
vulnerabilities. The myriad unprecedented attacks
and security exposures, including on Internet of
Things (IoT) applications, calls for serious efforts
towards such formalization.

To provide a foundation, we are developing the
Bugs Framework (BF) [1], which organizes bugs into
distinct classes, such as buffer overflow (BOF),
injection (INJ), faulty operation (FOP), and control of
interaction frequency bugs (CIF). Each BF class has
an accurate and precise definition and comprises:
level (added after [l]), causes, attributes,
consequences, and sites of bugs. Closely related
classes may be grouped in clusters. Level (high or
low) identifies the fault as language-related or
semantic. Causes bring about the fault. At least one
attribute (denoted as underlined) identifies the
software fault, while the rest may be simply
descriptive. It 1s useful to catalog possible
conseguences of faults. Sites are locations in code
(identifiable mainly for low level classes) where the
Disclaimer: Certain trade names and compas
text or identified. In no case does such id tion imply recommendation

ar endorsement by the National Institute of Standards and Technology (NIST)
nor does it imply that they are necessarily the best available for the purpose.

products are mentioned in the

Yaacov Yesha

NIST, Gaithersburg, USA; UMBC, Baltimore, USA

bug might occur
causes. The go:
practitioners mc
describe, and mv

In this paper
previously dev
developed cryp
Bugs (ENC), Y
Management E
definitions and
of vulnerabilitie
and Exposures
Common Weal
Software Fault
summarizes our
and presents ow

f3
1. PREVIOUSLY |

Our first de
Overflow (BOE
Interaction Freq
give their defi
examples ol
https://samate.n

BOF: The st
memory locatio
that array. Attr
Magnitude, Dat

INJ: Due to

elements

the sc

that is parsed i

CIF: The so
number of repe.
Attributes: Inter

2018 42nd IEEE Intern:

ional Conference on Computer Software & Applications

Randomness Classes in Bugs Framework (BF):
True-Random Number Bugs (TRN) and

Ircna Bojanova

58D, ITL
NIST

(‘.mhu-.sburn \|D L QA

Pscudo-Random Number Bugs (PRN)

Paul E. Black
88D, ITL
NIST
Gaithersburg, MD, USA
L v

ers ideatify them and avodd security
Framework (BF) comprises rigorous
definitions and (static) attributes of bug classes, along with their
related dynamic properties, such as proximate and secondary
canses, cansequences and sites. This paper presents two new BF
classest True-Random Number Bugs (TRN) and Pseudo-Random
Number Bugs (PRN). We analyze particular vulnerabilities and
use these classes to provide clear BF descriptions. Finally, we
discuss the lessons learned towards creating new BF classes.

Keywords—randommess, random mumbers, random mumber
software

number
weaknesses, bug taxanomy, attacks.

L INTRODUCTION

Randomness has application in many field
cryptography, simulation, statistics, politics, nee.
gaming. Any specific use has its own mqmmncm: for
randomness — e.g_, random bit generation for cryptography or
security purposes has stronger requirements than generation for
other purposes. For eryptography or security purposes, the
National Institute of Standards and Technology (NIST)
recommends use of cryplographically secure Pseudo-Random
Bit Generators (PRBGs). They are subject to the requirements
in @NIST SP 800-90A [R], NIST SP 800-90B [9] and NI
SP §00-90C [10]. Satisfying the requirements for a particular
use can be surprisingly difficult [1]*.

Weaknesses (bugs) in random number generators (RNGs)
may lead to wrong results from the algorithms that use the
generated numbers or allow attackers to recover secret values,
such as passwords and cryptographic keys. Formalization of
randomness bugs would help researchers and practitioners
identify them and avoid security failures. For that we have
developed a general descriptive mode! of randomness and two
randomness classes as part of the Bugs Framework (BF) [2, 3]

In this paper, we discuss randomness bugs, present the BF
randomness bugs model, and detail our newly-developed
randomness classes: True-Random Number Bugs (TRN) and
Pscudo-Random Number Bugs (PRN). The details include
definitions and taxonomy of these classes, examples of
vulnerabilities from the Common Vulnerabilities and

s (CVE) [4]. and correspondir
Enumeration (CWE) [5] or Software Fz
In the concluding section we discuss the

II. THE BUGS FRAMEWOF

The Bugs Framework (BF) provides
unambiguous definitions of software wi
language-independent taxonomy that al
of software vulnerabilities [2, 3]. It orga
classes. The taxonomy of each BF ¢
causes, attributes, consequences, and sit
or low) identifies the fault as languag
Causes bring about the fault. At least or
underlined) identifies the software fault,
simply descriptive. It is useful
consequences of faults. Sites are locatio:
mainly for low level classes) where the
circumstances indicated by the causes.

Previously developed BF classes
(BOF), Injection (INJ), Control of Inter:
(CIF) [2], Encryption Bugs (ENC), Ve
Key Management Bugs (KMN]) [3], ani
Here we only give their definitions. [
examples of use are available at [7] .

BOF: The software accesses throug
location thar is outside the boundaries o

INJ: Due to inpui with language-sp
the software assembles a command strin
invalid construct.

CIF: The software does not proper
repeating interactions per specified unit

ENC: The software does not prope.
data (plaintext) into uninelligible jor:
eryptographic algorithin and key(s)

VRF: The software does not properi
prove source, or assure data is not altery

KMN: The software does not pra
distribute, use, or desiray crypiographic
maierial.

FRS: The software produces
conversions between primitive types,
domiain vielations.

* The icon is used through the paper where we note the NIST SP 300-90
recommendations for construction of RBGs

Disclai
toxt or i
ar endoeser

riain trade names and company pro
edl In no case does such idenrificatic
it by the National Institute of Standa.
(NIST), nox that they are necessarily the best avail

2019 TEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

Information Exposure (IEX):
A New Class in the Bugs Framework (BF)

Yaacov Yesha
CSEE, UMBC
Baltimore, MD,
SSD, ITL, NIST
Gaithersburg, MD, USA
yaacov. yesha@nist gov

Irena Bojanova
SSD, ITL, NIST
Gaithersburg, MD, USA

irena bojanova(@nist gov

e of sensitive information can be harmful
could enable further attacks. A rigorous
and unambiguous definition of information exposure faults can
help researchers and practitioners identify them, thus aveiding
security failures. This paper describes Information Expesure
ss in the Bugs Framework (BF). The IEX class
camprises a rigorous defi attributes of the elass,
such as proximate
equences and sites. We use the IEX
analyze specific vulnerabilities and provide clear
We also discuss lessons we learned that will help
ional BF classes.

Abstract—Exposn
on its awn. In addition,

ion and (stat

along with their related dynamic prope
and secondary causes,
class to

rds—sensitive information, information

\ exposure,
information leakage, software weaknesses, bug taxonomy

attacks.

L INTRODUCTION

The software profession is in need of a structured framework
allowing us to unamb]zunuﬂ\. discuss software faults, taﬂures
attacks and Some ! ar
structures in science are the Periodic Table of Elements, the Tree
of Life, the Geographic Coordinate System, and the Dewey
Decimal Classification System

Common Weakness Enumeration (CWE) [1], Common
Vulnerabilities and Exposures (CVE) [2] are widely used
compilations. However, for very formal, exacting work, the
definitions are often inaccurate, imprecise or amhiguous. Fach
CWE bundles many stages, such as likely attacks, resources
affected and consequences. The coverage is uneven, with some
combinations of almhules well represented and others not

Paul E. Black Yan Wu
SSD, ITL, NIST CSD, CAS, BGSU
Gaithersburg, MD, USA Bowling Green, OH,

paul black@nist gov yanwu@bgsu edu

In this paper, we present our brand-new BF class
Information Exposure (IEX) - including the BF information
exposure model, examples of IEX descriptions of CVE
vulnerabilities, and lessons leamed. Previously developed BF
classes are presented in the Publications page in [5]

1L INFORMATION EXPOSURE

Information and data can be stored, transferred, and used by
digital systems. Information exposure, or information leaks,
occurs when the system inadvertently reveals sensitive
information inappropnately. [6]

Through information exposure bugs, the software may
reveal login credentials, private keys, stale and system data, as
well as personal, financial, health, or business data. Formalizing
information exposure faults would help researchers and
practitioners identify them and avoid related failures. To
describe them, we developed a general descriptive model of
information exposure and one new BF class.

In this section we discuss related terms and our BF model of
mformation exposure.

A Information and Data

The terms “data” and “information” are often used
interchangeably. Data is “a set of values of qualitative or
quantitative variables” [7]. Information is “any entity or form
that provides the answer to a question of some kind or resolves
uncertainty” [8]. To what extent data is informative to someone
depends on how unexpected it is to that person. A difference
between data and information is that data has no meaning, while

Missing Cornerstones

e Strict Definitions of:
O Bug
o Weakness
o Vulnerability
o Failure

e Clarity on:
o Chaining Bugs/Weaknesses/Failures
o Merging Chains

Terminology

e Software Bug:
o A coding error
o Needs to be fixed

e Software Weakness — difficult to define:
o Caused by a bug or ill-formed data
o Weakness Type — a meaningful notion!

e Software Vulnerability:
o An instance of a weakness type that leads to a security failure
o May have several underlying weaknesses

e Security failure:
o A violation of a system security requirement

I. Bojanova and C. Eduardo Galhardo, "Classifying Memory Bugs Using Bugs Framework Approach," 2021 IEEE 45th Annual
Computers, Software, and Applications Conference (COMPSAC), 2021, pp. 1157-1164, https://doi.org/10.1109/COMPSAC51774.2021.00159.

https://doi.org/10.1109/COMPSAC51774.2021.00159

BF Goals

1. Solve the problems of imprecise descriptions and unclear causality

/\/\/\/\

2. Solve the problems of gaps and overlaps in coverage

BF Features — Clear Causal Descriptions NIST

e BF describes a bug/weakness as: m

O An Im p ro pe r State Improper Improper
State 1 State 2:
an d (operation 1 (operation 2,
‘b operand 1, ... operand 2,, ...
o Its transition operand 1 operandiz,

...) o)

e Improper State — m

a tuple (operation, operand,, ... , operand,)

Improper .
prop Failure

, Where at least one element is improper oprone

® Transition —
the result of the operation over the operands nitil State — caused by the Bug

—the operation is improper

Intermediate State — caused by ill-formed data

— at least one operand is improper
Final State — the Failure

— caused by a final error

BF Features — Chaining Weaknesses

e BF describes a vulnerability as:
o A chain of improper states and their transitions

o States change until a failure is reached

Improper

Improper

Improper

operand 2, operand 3, operand n,
(operation 1 (opS(::z:ﬁozn 2 (operationn Failure
operand 1, ... operand 2.
operand 1,)) operand n,

) N)

Initial State — caused by the Bug

—the operation is improper

Intermediate State — caused by ill-formed data
— at least one operand is improper

Final State — the Failure
— caused by a final error

BF Features — Backtracking

e How to find the Bug?
® Go backwards by operand until an operation is a cause

Improper Improper Improper
operand 2, operand 3, operand n,
Improper
Eeiny Improper State n
(operation 1 (opS(::z:ﬁozn 2 (operationn Failure
operand 1, ... operand 2.
operand 1,)) operand n,

) N)

Initial State — caused by the Bug

—the operation is improper

Intermediate State — caused by ill-formed data
— at least one operand is improper

Final State — the Failure
— caused by a final error

BF Features — Converging Vulnerabilities NIsST

Improper
operand n,

Improper
operand 2,

Improper

Improper
State 1 State n
(operation 1 (operation n Failure
operand 1; ... operandn, ...
operand 1, operand n,,
o) o)
Improper Improper
operand 2’, operand q’, Error’
Improper Improper
State 1’ State q’
(operation 1’ (operation g’
operand1’; ...
Sfpraa 47 SR Initial State — caused by the Bug
)) —the operation is improper

Intermediate State — caused by ill-formed data
— at least one operand is improper

Final State — the Failure
— caused by a final error

BF Features — Classification

e BF Class —a taxonomic category of a weakness type, defined by:
o A set of operations
o All valid cause - consequence relations

o A set of attributes

BF Features — Tools

® (Creation of:

» BF classes diagrams -

Causes

Improper Operation:
* Missing
* Erroneous

Improper Data:

» BF-CWE di-graphs ; Comupted

* Wrong Number

» Vulnerabilities graphs |- Wrongostarype

& diagrams

® (Querying of:
> Vulnerabilities

Inconsistent
Value

Qver Bounds
Pointer

DVR MAD
(Verify: (Reposition,
Missing, Data Pointer, Object,
(payload Size: Inconsis-
length), Policy) tent Value)

Not Cleared
Object

MUS
(Clear: Missing,
Pointer, Object,

Size)

* Meaningless J
Attributes
Operation Data
Mechanism: Source Code: Execution Location: Side:
* Range * Codebase Space: * User * Client
¢ Is Null * Third Party * Userland Entered * Server
+ SafeList + Standard + Kernel + Stored o 4170
* Unsafe List Library * Bare-Metal| * Transferred ‘,
* Businesslogic | * Processor * InUse m«) mu mg I’XT / \
55 ‘1‘)()
1|74
Buffer 18 (M(
Qverflow 85 g ﬂl
184
MUS - m
(Read, Pointer: (BIEf)f(IX(\ o
QOver Bounds, Ovellj‘flc?\:v) i
Object, Size)
Cause DVL Operation Consequence
Improper Operation: Validate Injection Error:
Missing File Injection
(Relative Path Traversal)
Attributes
Caused by the Bug Operation Data
Mechanism: Source Code: Execution State:
Caused by ill-formed data + Format (e.g., via * Codebase Space: * Transferred
AN N L (login.jsp) + Admin (via network)

'\\

DVR Operations

* Verify
* Sanitize Semantic

The Failure — caused by final error(s)

83
Consequences

for Next Operation:
* Wrong Value
_* Wrong Data Type

692

x(
943
t)(;> \

652

~” 84 l :
564 xo&\/ 80 mo/ 5
Improper Data 87 % %
9

S

/ & 97
8

94

95 914

\Z \‘”-‘ﬁw
AN

regular expression)

IVX
,40 ; 140
o 236 oV, l-l(» [q‘?

Ny

3B — 23 ——{ 26

L%

707

I-l’

156
14 §

§130; 149)1150) 151

(\7{>

Remote Code
f Execution

The Bug

The Failure

BF — Defined

e BFisa...

> Structured
> Complete
> Orthogonal

> Language independent

classification of software bugs and weaknesses

BF — Bugs Models

e Example:

The BF Memory Bugs Model:

o Four phases, corresponding to

the BF memory bugs classes:
MAD, MAL, MUS, MDL

o Memory operations flow

Object
Space
b

Upper
Bound |

Object [/
. <,
Size

Lower

Bound

Other Object
/ NULL

MAL (Object)

R

MUS (Object)

Dereference

\ REduce
Reallocate

MDL[Ob_jEC‘E]

Deallocate

Object

Destroy T Lifetime

Object

Create
Object

Dtuect
InUse

BF Classes — Examples

Data Verification Bugs (DVR)

Causes

DVR Operations

Improper Operation:
* Missing
* Erroneous

. Verify *
* Sanitize Semanfics

Improper Data:
* Corrupted
* Unauthentic
* Wrong Number
* Wrong Data Type

e

\ Meaningless J
Operation
Mechanism: Source Code:
* Range * Codebase
* |5 MNull * Third Party
* Safelist * Standard
* UnsafeList Library
* BusinessLogic | * Processor

Attributes +

Execution
Space:

* Userland
* Kernel

* Bare-Metal

Consequences

Improper Data
for Next Operation:
* Wrong Value

\- Wrong Data Typ

Data
Location: Side:
* User * Client
Entered * Server
* Stored
* Transferred
* InUse

Memory Addressing Bugs (MAD)

MAD Operations

Causes

d Improper Operation:
* Missing
+ Mismatched
* Erroneous Y,

/ImproperPointer:
* MULL Pointer +
* Wild Pointer
* Dangling Pointer
+ COverBounds
* UnderBounds
* Untrusted Pointer
* Wrong Position
* Hardcoded Address

'+ CastedPointer /

Improper Object:
* Wrong Size Used

* NotEnough Allocated

Consequences

.H\\
5,

* Initialize + ,f/ Improper Pointer
* Reposition for Next Operation:
* Reassign * NULL Pointer
* Wild Pointer
* Dangling Pointer
* OverBounds
* UnderBounds
* Untrusted Pointer
* Wrong Position
* Casted Pointer
‘-\\' ForbiddenAddress/,-
Attributes +
Operation Object
Mechanism: | Source Code: Execution Location:
* Direct * Codebase | Space: * Stack
* Sequential | = Third Party * Userland Heap
* Standard *Kernel s,
Library * Bare-
* Processor Metal

A

Memory Use Bugs (MUS)

Causes MUS Operations Consequences

/Improper Operation:\ « Initialize | / Memory Error: \
* Missing * Dereference « Uninitialized Object
* Mismatched + Read * Not Cleared Objec
¢+ Erroneous * Write * NULL Pointer
- S

+ Clear Dereference

/ . ™ * Untrusted Pointer
Improper Pointer:

* NULL Paointer + . Dereference

« Wild Pointer Object Carruption

+ Type Confusion
* Dangling Pointer yp

* Use After Free
* Qver Bounds

+ Buffer Overflow
* Under Bounds + Buffer Underflow
* Untrusted Pointer

* Wrong Position * Uninitialized

« Casted Pointer \. Pointer Dereference /
\ * Forbidden Address /

s ™

Improper Object:

* Not Enough Allocated
" S

Attributes +
Operation Pointer

Object
Mechanism: Source Code: Execution Space: | Span: Location:
* Direct * Codebase * Userland * Little * Stack
+ Sequential * Third Party * Kernel * Moderate @ * Heap
* Standard * Bare-Metal * Huge LI
Library

* Processor

BF — Validation Towards CWE

_ 82 30)| 29
97 3 28 55

08 32 ‘A\/L 27 58 48
564 * %so mﬁ 0k
33— 23 —{ 26 > 47
- 53 41 <
34 25
692 o 35 Y‘ 44'7/\‘v /
- 24
\ B ﬁ
\ 42) 4

54
641 (19
40 6
36 <
” 7 v 30 [

6

78

15 622

.{170_4
T8
- / ..1284 ._‘28_‘“ / \
554 N
1174

m
240
(}()6 239
2 31 238

734 236 : *»..
565 47 235 {130}

183

184

1 8()
625

Input/Output CWEs (incl. Injection) —
mapped by BF DVL and BF DVR consequences

CWE by DVL Injection Error: CWE by Abstraction:

P

Query Injection Pillar

Command Injection ¢ Class
Source Code Injection Base
Parameter Injection O Variant
File Injection Q Compound

CWE by DVL orDVR Wrong Data for Next Operation Conseguence:

O DVL Invalid Data

O DVR Wrong Value, Inconsistent Value, and Wrong Type

No consequence (only cause listed)

Example:

BF Chain for
“BadAlloc” Pattern

ICS Advisory (ICSA-21-119-04)

e ™~
CYBERSECURITY @ 8 cisa.gov/uscert/ics/advisories/ficsa-21-119-04

UG TN LTSI U L Ly

& INFRASTRUCTURE D « Windriver VxWorks, priorto 7.0

SECURITY AGENCY [

« Zephyr Project RTOS, versions prior to 2.5

4.2 VULNERABILITY OVERVIEW
Alertsand Tips Resources 4.2.1 INTEGER OVERFLOW OR WRAPAROUND CWE-150

Media Tek Linklt SDK versions prior to 4.6.1 is vulnerable to integer overflow in memory allocation calls pvPortCalloc(c
ICS-CERT Advisories = Multiple RTOS (Update E) memory corruption on the target device.

CVE-2021-30636 has been assigned to this vulnerability. A CVSS v3 base score of 7.3 has been calculated; the CVSS vect

ICS Advisory (ICSA-21-119-04) 42.2 INTEGER OVERFLOW OR WRAPAROUND CWE-10

. ARM CMSIS RTOS2 versions prior to 2.1.3 are vulnerable to integer wrap-around inosRtxMemoryAlloc (local malloc equ
Multiple RTOS (Update E) ’

allocation, resulting in unexpected behavior such as a crash orinjected code execution.

Original release date: April 19, 2022 i i .
CVE-2021-27431 has been assigned to this vulnerability. A CVSS v3 base score of 7.3 has been calculated; the CVSS vect

4.2.3 INTEGER OVERFLOW OR WRAPAROUND CWE-190

Print » Tweet Send
ARM mhbed-ualloc memaory library Version 1.3.0 is vulnerable to integer wrap-around in function mbed_krbs, which car
Legal Notice unexpected behavior such as a crash or a remote code injection/execution.
Allinfarmation products included in hitps://us-cert.ciza.gov/ics are provided "as is” for informational purposes only. The Department of CVE-2021-27433 has been assigned to this vulnerability. A CVSS v3 base score of 7.3 has been calculated; the CVSS vect

4.2.4 INTEGER OVERFLOW OR WRAPAROUND CWE-190

regarding any information contained within. DHS does not endorse any commercial praduct or service, referenced in this product or othe

Light Protocol (TLP) marking in the header. For more information about TLP, see hitps://us-cert.cisa.gov/tlp/.
ARM mhbed product Version 6.3.0 is vulnerable to integer wrap-around in malloc_wrapper function, which canlead to a
behavior such as a crash or a remaote code injection/execution.
CVE-2021-27435 has been assigned to this vulnerability. A CVSS v3 base score of 7.3 has been calculated; the CVSS vect
1. EXECUTIVE SUMMARY 4.2.5 INTEGER OVERFLOW OR WRAPAROUND CWE-130
. CVSSV39.8 RIOT OS5 Versions 2020.01.1 is vulnerable to integer wrap-around in its implementation of calloc function, which can le:

« ATTENTION: Exploitable remotely/low attack complexity unexpected behavior such as a crash or a remote code injection/execution.

+ Vendors: Multiple CVE-2021-27427 has been assiened to this vulnerability. A CVSS v2 base score of 7.3 has been calculated: the CVSS vect

https://www.cisa.gov/uscert/ics/advisories/icsa-21-119-04
https://www.cisa.gov/uscert/ics/advisories/icsa-21-119-04

CVE-2021-21834 and

the Bad Allocation Chain

Cause

DVR Operation

Consequence

Cause MAL Operation Consequence
(- - N N
Improper Operation: Check . Improper Data Value: Improper Data Value: Allocate Improper Object Size:
Missing (u6d)ptr->nb_entries > Inconsistent Value Wrong Size (9f malloc()) Not Enough Allocated
- (u64)SIZE MAX/sizeof (u64)) o) = J
= (> max 64-bit int) ((size of memory to allocate)
J .
Attributes Attributes
Mechanism: | Source Code: Execution Space: | Data State: Mechanism: | Source Code: Execution Pointer Object
* Range * Third Party (library e Local * Stored (number of * Explicit * Third Party (library | Space: Ownership: Location:
box code base.c) entries read from file) box code base.c) [¢ Userland [< Single * Heap
Cause TCM Operation Consequence Cause MAD Operation Consequence
(Improper Data Value: Calculate Improper Data Value; rlmproper Object Size: Reposition Improper Data Value:‘
§ Wrong Argument (ptr->nb entries*sizeof (u64)) Wrap Around) Not Enough Allocated Over Bounds Pointer}
" Attributes
- Attributes - - Mechanism: Source Code: Execution Space: | Object Location:
Mechanism: Sourcg Code: . Data Valufe Kind: | Data Type Kind: « Sequential « Third Party (library . Userland « Heap
* Operator * Third Party (library | * Numeric * Structured b
. . ox code base. c)
(Arithmetic: v*) box code base.c)
Cause MUS Operation Consequence
(Improper Data Value: Write Memory Error:)
. Over Bounds Pointer Buffer Overflow)
Attributes
Mechanism: Source Code: Execution Pointer Span: | Object
* Sequential * Third Party (library | Space: * Huge Location:
box code base.c) » Userland * Heap

BF Tools Set

. Editor of BF Vulnerabilities Descriptions N&T

The BF vulnerabilities descriptions consist of bug-weaknesses-failure chains.

This tool would allow users to:

1. To create instances of bugs, weaknesses, and failures with specific cause,
operation, and consequence selections, connect these instances by
consequence-cause relationships, and specify attributes about each involved
operation and its operands. The resulting BF vulnerabilities' descriptions will
be in an XML .bf format adhering to a BF Vulnerability description XSD
schema.

2. To generate graphical PPTX representations of BF vulnerabilities descriptions
via XSLT transformations.

3. To edit and query generated BF vulnerabilities descriptions.

1. BF.xml — all BF Clusters of Classes

BFxml® + X
<!—@author Irena Bojanoua(ivb]——%
<!——@date - 2/9/2022-->
||-<BF Name="Bugs Framework"> 4
- <Cluster Name="_INP" Type="Bug/Weakness" Definition="Input/Output Check Bugs (incl. Injection
- <Class Name="DVL" Title="Data Validation Bugs" Definition="Data are validated (syntax check
= <QOperations>
<Operation Name="Validate"/>
<Operation Name="Sanitize"/=>

<!--@author Irena Bojanova(ivb)-->

i <AttributeType Name="Mechanism" Definition="The specific po'] | <!-—@date - 2/9/2022—>
L& <AttributeType Name="Source Code" Definition="Shows where t -<BF Name="Bugs Framework">
B <AttributeType Name="Execution Space” Definition="Shows wherj | <Cluster Name="_INP" Type="Bug/Weakness" Definition="Input/Output Ch">...</Cluster
</Operations> E2 <Cluster Name="_DTP" Type="Bug/Weakness" Definition="Data Type Bugs ">...</Cluster
- <Operands= - <Cluster Name="_MEM" Type="Bug/Weakness" Definition="Memory Bugs (incl. Corruption
- <Operand Name="Data" Definition="The data writtten in the o - <Class Name="MAD" Title="Memory Addressing Bugs" Definition="The pointer to an
+ [cAttributeType Name="State" Definition="Shows where the" - <Operations>
</0Operand> <Operation Name="Initialize"/>
<Operand Name="Policy" Definition="Operand Rule: The data d <Operation Name="Reposition"/>
</Operands> <Operation Name="Reassign"/>
<Causes=

<BugCauseType Name="Improper Operation” Definition="The Bug
<Cause Name="Missing"/>
<Cause Name="Erroneous"/>

</BugCauseType>

<BugCauseType Name="Improper Policy" Definition="The Bug is
<Cause Name="Under-Restrictive Policy"/>
<Cause Name="Over—Restrictive Policy"/>

</BugCauseType>

<WeaknessCauseType Name="Improper Data Value" Definition="A
<Cause Name="Corrupted Data"/>
<Cause Name="Tampered Data"/>

</WeaknessCauseType>

<WeaknessCauseType Name="Improper Policy Data" Definition="
<Cause Name="Corrupted Policy"/>
<Cause Name="Tampered Policy"/>

</WeaknessCauseType>

</Causes>

<AttributeType Name="Mechanism">...</AttributeType>]
<AttributeType Name="Source Code">...</AttributeType=
<AttributeType Name="Execution Space">...</AttributeType>

</Operations>
<Operands=

lkOperand Name="Address">...</Operand>
<Operand Name="Size"/>

</Operands>
<Causes>

<BugCauseType Name="Improper Operation" Definition="The Bug"=>
<Cause Name="Missing"/>
<Cause Name="Mismatched"/>
<Cause Name="Erroneous"/>
</BugCauseType>
<WeaknessCauseType Name="Improper Data Value" Definition="A Weakness -
<Cause Name="Hardcoded Address"/>
<Cause Name="Wrong Index"f%
=zCause Name="Wrona Size Used" /=

»¥ BF Editor

File

SRS NN

Vulnerability:

DVR
MAD +

IEX

Bug/Weakness/Failure

Weakness:

BF Class:
- _INP
DVL
DVR
- _DTC
DTT
TUS
TCC
- _MEM
MAD
MAL
MDL
=] _CRY
ENC
VRF
KMN
- _RND
TRN
PRN

Rollback

Preceding Conseqeunce:
Over Bounds Pointer

Cause:

=l Improper Data Value

Forbidden Address

Wrong Size Used

=l Improper Data Type

Casted Pointer

=/ Improper Address
NULL Pointer
Wild Pointer
Dangling Pointer

Untrusted Pointer
Under Bounds Pointer
Wrong Position Pointer

Over Bounds Pointer

Comment:

for s—s3—rrec.data[0]

Operation Attributes:

-[CIMechanism
DDirect
[Msequential

-DSource Code
[Mcodebase
[CIThird Party

[Jstandard Library
DLanguage Processor

-[Jexecution Space
Userland
[Ckernel
DBare-MetaI

Comment:

d1_both.c and tl_lib.c

Operation:
Initialize
Dereference
Read
Write
Clear

Comment:

Operand Attributes:
-[JAddress
= DSpan
[:]Litle
DModerate
[ZHuge
-[JLocation
[:IStack
MHeap
I:l/other/

Comment:

+

Consequence:
= Memory Error
Uninitialized Object
Not Cleared Object
NULL Pointer Dereference
Untrusted Pointer Dereference
Object Corruption
Type Confusion
Use After Free +

Buffer Underflow
Uninitialized Pointer Dereference

< >

Comment:

Following Cause:
Buffer Overflow

<<

2. Generated Graphical Representation of

BF Heartbleed Description

Buffer
Overflow

Over Bounds
Pointer

Inconsistent
Value

DV': . MA-D- M IEX
(Verify: (Reposition, (Read, Pointer: (Buffer
Missing, Data Pc?mt.er, ObJ(’tCt, Over Bounds, Overflow)

(payload' Size: Inconsis- Ol S
length), Policy) tent Value)
Not Cleared
Object
MUS
(Clear: Missing,
Pointer, Object,
Size) Caused by the Bug

Caused by ill-formed data

The Failure — caused by final error(s)

2. Detailed Graphical Representation of

the BF Heartbleed Description

Cause DVR Operation Consequence
Improper Operation: Verify Improper Data Value:)
Missing Inconsistent Value
(forpayload size)
Attributes
Operation Data
Mechanism: Source Code: Execution State:
* Quantity * Codebase Space: * Transferred
(d1_both.cand tl_lib.c) * Admin (via network)
Cause MAD Operation Consequence
Inconsistent Value: Reposition Improper Address:)
Wrong Size Used Over Bounds Pointer
(for s»s3-rrec.data[0]) g
Attributes
Operation Object
Mechanism: Source Code: Execution Space: | Location:
* Sequential * Codebase * Userland * Heap
(d1_both.c and tl_lib.c)
The Bug
A Weakness

The Failure

NST

Cause MUS Operation Consequence
(Improper Operation: Clear Improper Data Value:)
Missing Not Cleared Object
) Attributes ’
Operation Pointer Object
Mechanism: Source Code: Execution Space: Span: Location:
* Sequential * Codebase * Userland * Huge * Heap
(other software)
Cause MUS Operation Consequence
4 Improper Address: Read Memory Error:
Over Bounds Pointer Buffer Overflow
(for s»s3-rrec.datal0])
Improper Data Value:
_ Not Cleared Object .
Attributes
Operation Pointer | Object
Mechanism: Source Code: Execution Space: | Span: Location:
* Sequential * Codebase * Userland * Huge | * Heap
(d1_both.c and tl_lib.c
and other software)
Information

Exposure (IEX):
Buffer Overflow

3. Edit and Query BF Descriptions

 Edit generated BF vulnerabilities descriptions.

* Allow BF vulnerabilities descriptions that
converge two or more chains via "and/or" conjunctions.

 Query BF vulnerabilities' descriptions by:
Class

Operation

Cause

Consequence

Attributes

and combinations of such.

D N N N N NN

Il. Editor of BF Classes and BF Clusters

This tool will allow BF developers collaborators to:

1. To create descriptions of BF classes with sets of values for each class causes,
operations, and consequences, as well as of matrices with meaningful cause-
operation-consequences combinations. The resulting BF classes descriptions
will be in XML format adhering to a BF classes XSD schema and can be used
by software assurance tools developers to report found bugs and
weaknesses, as well as to provide precise vulnerabilities' descriptions.

2. To generate graphical representations of BF classes from the XML

descriptions via XSLT transformations. The graphical representations will be in
PowerPoint .pptx format.

3. To generate BF-CWEs relational di-graphs for validation of newly developed
BF classes towards the flawed, but widely used CWE.

1. BF Classes and Matrices of

Cause-Operation-Conseqguences

Create descriptions of BF classes
with sets of values for each
class causes, operations, and consequences.

Create matrices with meaningful
cause-operation-consequences combinations.

2. Generated Graphical Representations of

NST

the BF TCV & TCM Classes

Type Conversion Bugs (TCV) Type Compute Bugs (TCM)

Causes TCV Operations Consequences Causes TCM Operations Consequences
Improper Operation: . Cast Improper Data Value:) (Improper Operation:) . Calculate Improper Data Value:\
* Missing . Coerce * Wrong Result * Wrong « Evaluate * Under Range
L Wrong * Truncated Value L’ Erroneous) Over Range
* Distorted Value Flipped Sign
Improper Data Value: * Rounded Value) 4 Improper Data Value:) Wrong Result
* Under Range | . * Wrong Object Wrap Around)/
* Over Range Improper Data Type: * Reference vs. Object .
* Flipped Sign) » Wrong Type) \ Wrong Argument J Type Compute Error:
. . * Undefined (div by 0))
(Improper Data Type: h Improper Data Type:
+ Wrong Type © WrongType)
% Mismatched Argument/
4 Improper Function I
| . Implementation:
mproper Func.tlon * Wrong Function
. l\/:zsri,:egrg?/':ral‘;::jn. * Wrong Generic Function
\ / . Wrong Overridden Function
Attributes \.> Wrong Overloaded Function /
Mechanism: | Source Code: Data Value Kind: | Data Type Kind: Attributes
* Passin ’ Co.debase * Numeric * Primitive Mechanism: Source Code: Data Value Kind: Data Type Kind:
* PassOut | + Third PartY ’ Te>.<t * Structured * Function * Codebase * Numeric * Primitive
» Standard Library | - Pointer * Operator * Third Party e Text e Structured
*_Processor * Boolean * Method * Standard Library * Pointer
* Lambda * Processor * Boolean
Expression
* Procedure

_DTCxslht

3. CWEs Relate to BF Clusters

INPxsht = > JEllnl
<!-—@author Irena Bojanova(ivb)——=>
<!——@date - 07/09/2021—->

-1<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.o0rg/1999/XS| /Transform” xmlns:msxsl="urn:sch

En

£

I+

&

<!—Slidel-—>
<xsl:param name="showOperationCWEs">

<ClassOperation name="DVL Validate">...</ClassOperation>
<ClassOperation name="DVL Sanitize">...</ClassOperation>|
<ClassOperation name="DVR Verify"=>

<CWE>129</CWE>

<CWE>130</CWE>

<CWE>170</CWE>

<CWE>230</CWE>

<CWE>232</CWE>

<CWE>UT72</CWE>

<CWE>606</CWE>

<CWE>781</CWE>

<CWE>91U</CWE>

<CWE>1039</CWE>

<CWE>128U</CWE>

<CWE>1285</CWE>

<CWE>1287</CWE>

<CWE>1288</CWE>

<CWE>1289</CWE>
</ClassOperation>

_DTCaxsit* + x LEEES

-<xsl:stylesheet version="1.0" xmlns:xsl="

<!—— could list repeating CWEs in all sets and color with mix of the colors—-=
<!—Slidel-—>

[|=

xmlns:msxsl="urn:

<xsl:param name="showOperationCWEs">

[<ClassOperation name="General">...</ClassOperation>]

<ClassOperation name="DCL Declare"=
<CWE>UT1</CWE>
<CWE>U91</CWE=>
<CWE=>U92</CWE>
<CWE=>U93</CWE>
<CWE>U95</CWE>
<CWE>U96</CWE>
<CWE>U99</CWE>
<CWE>500</CWE>
<CWE=>582</CWE>
<CWE=>583</CWE>
<CWE>608</CWE>
<CWE>766</CWE>

</ClassOperation>

[<ClassOperation name="DVL Validate an">...</ClassOperatid

</xsl:param>

l<xsl:param name="showOtherCWEs">...</xsl:param>

<!—Slide2-—>
<xsLl:param name="showFinalErrorCWEs"=>
<Consequence name="Query Injection"=>
<CWE>89</CWE>

[<ClassOperation name="DCL Define">...</ClassOperation>
<ClassOperation name="NRS Refer"=

<!-——<CWE>386</CWE>——>

<CWE>706</CWE>
</ClassOperation>
<ClassOperation name="NRS Call"=>

<CWE>386</CWE>
</ClassOperation>
<ClassOperation name="TCV Cast"=>

<CWE>90</CWE>

erWE=5ER88« /CUWE =

590 82 30
97
\ 4)(83 7 31 571) \O/ (s1
= 2
(244) 401 762 - & szA A 4 o A
e 564 % 50
e
94

8
85
86
761
- 87
)
1789)
N/

771 E 692

79

80 1336
KX 23— 26
9%) > 41 %
34 33
763 95 914 2 25 56
\ : 35 4
24 -
917 52]
@ 943 40 42)\ ¢
& ~h Va
1236

N 9% -<'
(456)
@ 9
3
15 / 652 vm\\ ‘//\
7~ @ 91 e,
A . A
@ 75:i77:
- {457) /
-) YW
‘ (908 v
. @ @ 76 88
C

N
@ \588/" 15 622

102
. 105
.\ @ 106 '\\
@ ' 108 AIH}

7 # N . \
(1261 (191 | 806 '()()7
126 [(121] _/

797

168

791 167

166

_ L\ .
@ 1174 /

./’ - %

(122) @ 183

N/ 185 i 606 :

184
/7 b
131' 565 472
186

BF — Potential Impact

BF — Potential Impacts

e Allow precise communication
about software bugs and weaknesses

e Help identify exploit mitigation techniques

BF Addresses a Unique Need

e JHU APL — Automated Vulnerability Testing via Executable Attack Graphs:
o Chain vulnerabilities via logical directed graphs
o Determine most mitigation “paths” with least changes
o Detect user behavior prior to malicious effect

The lack of formal, precise descriptions of known
vulnerabilities and software weaknesses in the current National Vulnerability Database (NVD)
has become an increasingly limiting factor in vulnerability research, mitigation research, and
expression of software systems in low level modeling form.

A critical need for this research is a reliable set of well-formalized expressions that are
machine-ingestible. Dr. Bojanova’s proposed BF Tool Set would allow the creation of well-
formed descriptors for the software weaknesses, the vulnerabilities that can be exploited, and the
failures/effects that can be realized for each bug. Such a repository of information could be
ingested by all researchers looking to explore complex chains of vulnerabilities, which comprise
the vast majority of malicious cyber incidents worldwide.

We were thrilled to hear that a researcher at NIST was undertaking the needed improvement
to make such descriptions more formal and machine-readable. Such an endeavor will greatly
enhance the ability of cyber researchers to explore more complex attacks via computational
methods. This will be a huge boost to the U.S.’s ability to defend its networks, military systems,
and critical infrastructure, and will lead the way to better mitigation designs, improved software
development practices, and automated cyber testing capabilities.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9138852

BF Addresses a Unique Need

e RIT Secure and Trustworthy Cyberspace (SaTC):
o Projects on Vulnerabilities Research

The NIST Bugs Framework (BF) has made significant advances in creating first-of-its-kind
classification of software weaknesses that has enabled the community to express vulnerabilities
using a precise description.

allowing us to obtain a fine-grained understanding of security bugs
and their root causes. Additionally, the taxonomies and root causes in each bug class will provide
us valuable data to guide and enhance our static program analysis techniques and achieve higher
accuracy.

supports various research initiations at DARPA and other agencies. For
instance, the notion of “Weird Machines”- unintended, emergent program behaviors and attack
scenarios in DARPA’s Artificial Intelligence Mitigations of Emergent Execution (AIMEE)
program can be better explained and tamed using BF classes that capture such complex root causes.

Bugs Framework (BF) Tools Set can bring the software security community together in better
understanding of software security bugs but also development of high-fidelity tools.

https://research.njit.edu/secure-and-trustworthy-cyberspace-satc

More Interest and Support

INMETRO

LLNL

BIECO

Fraunhofer IESE

CSA

University of Greenwich
Carnegie Mellon University
St. John’s University
University of West Attica
Ericsson

Anchore Inc.

Latest BF Publications

2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC)

Classifying Memory Bugs
Using Bugs Framework Approach

Irena Bojanova
S350, ITL
NIST
Gaithershurg, MD, USA

irena_bojanova@nist. gov

Abstract—In this work, we present an orthogona] classifi-
cation of memory corruption bugs, allowing precise siructored
descriptions ol related soflware vualnerabilities. The Common
Wenkness Enumeration (CWE) & a well-known and used Bt of
software weaknesses. Howew U's exhaustive Est approach is
prone lo gaps and overlaps in coverage. Instead, we ulilize the
Bugs Framework (BF) approsch to define linguage-independent
clusses that cover all possible kinds of memory corruplion
bugs. Each class is a laxonsmic category of a weakness Lype,
defined by sets of operations, couse— consequence relutions,
and altribule. A BF descripion of a bug or a weakness
is an instance of a txenomic BF clas, with one operation,
e cawse, one consequence, and their aliributes. Any memory
vulnerability then can be d.ﬂ:n'hﬂl as a chain of such instances
and thei We sh that BF
is u classification system thal exiends the CWE, providing a
structured way to precisely describe real workd vulnerabilitics. It
allvws clear communication aboul soltware bugs and weaknesses
and can help identily exploit mitigation technigues.

Keywords—Buy classification, bug taxonomy, software vul-
merability, software weakness, memory cormuplion.

1. INTRODUCTION

Software bugs in memory allocation, use, and dealloca-
tion may lead o memory corruption and memory disclosune,
apening doors for cyberattacks. Classifying them would allow
precise communication and help us teach sbowt them, under-
stand and identify them, and avoid security failures. For that,
we utilize the Bug Framework (BF) approach [1].

The Common Weakness Enumeration (CWE) [2] &
Commaon Vulnershilities and Exposures (CVE) [3] are well-
known and used lists of software security weaknesses and
vulnerabilities. However, the CWE's exhaustive list approach
is prone 1o having gaps and overlaps in coverage, as demon-
atrated by the National Vulnerability Database (WD) effor
o link CVEs to appropriate CWEs [4]. Instead, we atilize the
BF approach o define four language-independent, enthogonal
classes that cover all possible kinds of memory related
software bugs and weaknesses: Memory Allocation Bugs
(MAL), Memory Use Bugs (MUS), Memory Deallocation
Bugs (MDL), and Memory Addressing Bugs (MAD). This
BF Memory Bugs taxonomy can be viewed as a structured
extension io the memory-related CWEs, allowing bug report-
ing tools o produce more detailed, precise. and unambiguous
descriptions of identified memory bugs.

Diselsimer: Cenain trade names and company [rodsts are m .m:d in i

DOE 101 RCOMES ACS

Carlos Eduardo Galhardo
Ivimel, Sins
INMETRO

Dugue de Caxias, RJ, Brazil

cegalhardo @ inmetro.gov br

In this paper, we first summarize the laest BF approach
and methodology. Mext, we amnalyze the types of memory
corruption bogs and define the BF Memory Bugs Model.
Then. we present our BF memory bugs classes and showcase
they provide a better, structured way to describe CVE entries
[3]. We identify the corresponding clusiers of memory cor-
ruption CWEs and their relations o the BF classes. Finally,
we discuss the use of these new BF classes for identfying
exploit mitigation technigues.

II. BF APPROACH AND METHODOLOGY
BF's approach is different from CWE's exhaustive list
ication. Each BF class is a taxonomic
category of a weakness type. It relates to a distinet phase of
softwane execution, the operations specific for thar phase and
the operands required as input o those operations.

We define a sofiware bug as a coding emor that needs
o be fived. A weakness is caused by a bug or ill-formed
data. A weakness type is also a meaningful netion, as
different vulnerabilities may have the same type of underlying
weaknesses. We define a vulnersbility an instance of a
weakness type that leads w0 a security failure. It may have
more than one undirlying weaknesses linked by L.nu-..ﬂm

BF describes a hle of a weakness as an improper stake
and its transition. The transition is to another weakness
of to a failure. An improper state is defined by the wple

aperand,, - --, operand). where at least
o Iun._m is unpmpn_r The initial state is always caused by
a bug: a coding ervor within the operation, which if fixed will
resolve the volnerability. An intermediate state is caused by
ill-formed data; it has at least one improper operand. Rarely
an intermediate state may also have a bug, which if fixed
will alsa resolve the vulnerability. The final state, the failore,
i caused by a final error (undefined or exploitable system
behavior), which usually directly relstes o a CWE [2]. A
transition is the result of the operation over the operands.

BF describes a wvulnerability as a chain of improper
siapes and their transitions. Each imprope ie is an instance
of a BF class. The wransition from the initial state is by
improper operation over proper operands. The wansitions
from iniermediaie states are by proper operations with at least
one improper operand.

In some cases, several vulnerabilities have to be presem
for an explodt 10 be harmful. The final errors resulting from
different chains converge o cause a failure. The bug in at
least one of the chains must be fixed to avedd that failore.

We call a BF class the set of operations, the valid
cause—consequence relations for these operations, their at-

2021 IEEE International Symposium on Software Reliability Engineering Workshops

SREW)

Input/Output Check Bugs Taxonomy:
Injection Errors in Spotlight

Irena Bojanova Carlos Eduardo Galhardo Sara Moshiari
S50, ITL Dimel, Sinst CROCTS, Oy
NIST INMETRO RIT

Gaithersburg, MD, USA
irena bajanova@ nist gov

Abstraci—In this work, we present am oribogonal clas-
sification of inputiowtput check bugs, allowing precise strsc-
tured descriptions of related softwnre vslnerabilities. We: utilize
the Bups Framework (BF) approach to define two language-

ent classes that cover all possible kinds of data check
bugs. We also identify all types of injection errors, as they are
whvays directly coused by Iq:-hmpu.t datn validation bugs.

Dugue de Caxias, RJ, Brazil
cegalhardo @ mmewo.gov_br

Rochester, NY, USA
sm24E] @ it edu

changed the assigred CWES over lime, and currently maps
CWE-190. while the cause is CW 0 and the full chain
is CWE-20-CWE-190-CWE-119 - lack of input verification
leads w imeger overflow and then w buller overflow.

The Bugs Framework (BF) [2] builds on these com-
monly used lists of soltware weaknesses and vulrerabilities,
while img the prabh that they have. It is being de-

Im BF each class is catrgory of & weakmess Bype
ﬂlﬁnudh'm-nlwerlﬂnﬂ.mrmq relations,

and sttributes. & BF description of @ bug or a weakness is
on instamce of o taxenomic BF class with one operation, one
couse, one consequence, and their sttribetes. Any valnerability
then can be described as o chain of nech instances and their
consequence-cause tramsitions. With owur newly developed Data

Epumcration (CWEL It allows rJnlr eommunication
nbout seftware bugs amd [
way to precisely describe reak-worid I-hl:rﬂﬂu.
—Hug dassification, bug taxonemy, seftware vuk
nerability, software weakmess, input validation, inpet sanitim.
tiom, input verification, injection.

1. INTRODUCTION

The most dangerows soltware ermrs (st open the Soars
fior eyberatiacks are injection and bulTer overllow, as analyzed
by frequency and severity in [1] and [2]. Injection is directly
cased by improper irpulfoutpul data vakidstion [3]. Buffer
averllow may be a comsequence of improper inpulioutput data
werilcation [4]. Classifying all imputfowtput data check bugs
amdl defiming the Lypes of injection ervors would allow precise
commaunication and help us peach about them, understand and
idderaify them, and avoid related security Faibures.

The Common Wesk ness Esumeration (CWE) [5] and the
Common Valnerabdlities and Exposures {CVE) [6] are well-
knorwn and used Hsis of software securily weaknesses and
vulnerabilities. However, they bave problems. CWE's exhaus-
tive list approach leads o gaps amd overlaps in coverage, a
demorsiraled by the Nalional Vuleerabality Datshase (NVD)
effert W Bok CVES 1o appropriste CWES [7). Mamy CWEs
aml CVEs have imprecise and unsinsctured descriptions. For
example, CWE-502 is imprecise a it is not clear wha
“gulficiently” and “verifying thal data is valid™ mean. Due
o he umstractured description of CVE B-5907, NV has

Disclsimer: Certsin wasde numes and compeny producs e mentooed b6 the
iex1 or entified. I 0o esse does such idemification imply secommendation

or endoesement by the Natioasl Instinse of Stndeds and Techoology
r\lsn noe that ihey see necessaily the best availsble fo the purprse.

SO0 5426005 52183000 ©N21 [EEE
I)(JI 101 WEASSREWS361 | 3021 00082

veloped as a strocumed, complete, onbogeaal, and language-
independent classification ol softwdre bugs and weakneises.
Swisclumed means 3 wedkness is described vid one cause,
one operalion, one comsequence, and one value per altribule
[rom the lists defining a BF class. This ensures precise
causal descriptions. Complete means BF has the expressive-
ness pewer ko deseribe amy software bug or weakness. This
ensures there are mo gaps in coverage. Onbogonal means the
sets of operstions of any two BF classes do not overlap.
This ensures there are po overlaps in coverage. BF is alo
applicahle for sowrce code in amy programming bnguage.
The cause—consequence relalion is & key aspect of BF's
melbodology that sets il aparl from amy other efforts, It
allows describing and chaining the bug and the weaknesses
inderkining a vulnerabilily, as well 2 idertilying a bug from
a final error and whal is required 1o fix the bug.

‘We milize the BF approach wo define two Enguage-
independent, oribogons] classes thal cover all possible kinds
of data check bugs amd wealmesses: Data Validaion Bugs
{D¥L) and Dats Werificmion Bugs (DVR). The BF Daws
Check Bugs taxonomy can be viewed 25 2 sirsctured ex-
lension Lo the input, outpul, and injection-relaved CWEs, al-
lowing bug reporting 1ools o produce moare detsiled, precise,
and enambiguous descripions of wentified dats validstion
and data verificalion bugs.

The main conlribulions of this work are: 1) we credle &
muodel of data check bugs: iy we credle a taxonamy that has
lhe expressiveness power 1o clearly describe amy dala check
bugs or weaknesses: fi) we confirm ur taxonomy covers the
corresponding inputfostpul CWES: iv) we showcase the use
of our inputfoutpul check bugs laxonomy.

W achieve these contributions :mspun.fu]h- via: i) iden-
ilying the operstiors, where data validation and dats verifi-
wation bugs could happen: ii) developing 1wo new siructuned.
orthoponal BF classes: DVL amd DVR, while alse delining
five types of injection emors, &) generaling digraphs of
CWE: relaled 1o inpulfostpul validstion wealiesces, & well
a5 Lo injection errors, and mapping these CWEs 1o BF DVL
and BF DRV by operation and by comequence; iv) deseribing
redl-workl vulnerabilities using BF amd BF DWR.: CVE-
2020-5902 BIG-1P FS, CVE-2019- Sequelire SOQL Io-

Questions

Irena Bojanova: irena.bojanova@nist.gov

	Slide 1: The NIST Bugs Framework (BF)
	Slide 2: My Background  Quite Excited about BF
	Slide 3: Agenda
	Slide 4: Existing Repositories
	Slide 5: Commonly Used Repositories
	Slide 6: Repository Problems
	Slide 7: Problem #1: Imprecise Descriptions
	Slide 8: Problems #2, #3: Unclear Causality, Tracking
	Slide 9: Problems #4, #5: Gaps/Overlaps in Coverage
	Slide 10: The Bugs Framework (BF)
	Slide 11: Example: CVE versus BF Descriptions of Heartbleed
	Slide 12: Heartbleed (CVE-2014-0160)
	Slide 13: Heartbleed (CVE-2014-0160)
	Slide 14: Clear Causality in Heartbleed
	Slide 15: BF Description of Heartbleed
	Slide 16: BF Tool – Generated Machine-Readable BF Heartbleed Description
	Slide 17: Previously – Heartbleed (CVE-2014-0160)
	Slide 18: The Bugs Framework (BF)
	Slide 19: Early Work
	Slide 20: Next BF Classes
	Slide 21: Missing Cornerstones
	Slide 22: Terminology
	Slide 23: BF Goals
	Slide 24: BF Features – Clear Causal Descriptions
	Slide 25: BF Features – Chaining Weaknesses
	Slide 26: BF Features – Backtracking
	Slide 27: BF Features – Converging Vulnerabilities
	Slide 28: BF Features – Classification
	Slide 29: BF Features – Tools
	Slide 30: BF – Defined
	Slide 31: BF – Bugs Models
	Slide 32: BF Classes – Examples
	Slide 33: BF – Validation Towards CWE
	Slide 34: Example: BF Chain for “BadAlloc” Pattern
	Slide 35: ICS Advisory (ICSA-21-119-04)
	Slide 36: CVE-2021-21834 and the Bad Allocation Chain
	Slide 37: BF Tools Set
	Slide 38: I. Editor of BF Vulnerabilities Descriptions
	Slide 39: 1. BF.xml – all BF Clusters of Classes
	Slide 40: 1. BF Editor
	Slide 41: 2. Generated Graphical Representation of BF Heartbleed Description
	Slide 42: 2. Detailed Graphical Representation of the BF Heartbleed Description
	Slide 43: 3. Edit and Query BF Descriptions
	Slide 44: II. Editor of BF Classes and BF Clusters
	Slide 45: 1. BF Classes and Matrices of Cause-Operation-Consequences
	Slide 46: 2. Generated Graphical Representations of the BF TCV & TCM Classes
	Slide 47: 3. CWEs Relate to BF Clusters
	Slide 48: Generated Graphical Representations of the Input/Output Cljuster Mappings to CWE
	Slide 49: BF – Potential Impact
	Slide 50: BF – Potential Impacts
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Latest BF Publications
	Slide 55: Questions

