
The NIST
Bugs Framework (BF)

Irena Bojanova

https://samate.nist.gov/BF/

My Background → Quite Excited about BF

● Ph.D. Dissertation –
Static Analysis, Simulation, and Verification of Formal Specifications:

● Fascinated by programming paradigms

● Developed formal specification languages

● BF – Dreams come true

● Existing Repositories:
o CWE
o CVE
o NVD
o KEV

● Example – Heartbleed

Agenda

● The Bugs Framework (BF)
o Early Work
o Terminology
o Goals
o Features

● Potential Impacts

Existing Repositories

● Weaknesses:

CWE – Common Weakness Enumeration

● Vulnerabilities:

CVE – Common Vulnerabilities and Exposures

→ over 18 000 documented in 2020

● Linking weaknesses to vulnerabilities – CWEs to CVEs:

NVD – National Vulnerabilities Database

● By priority for remediation – CVEs:

KEV – Known Exploited Vulnerabilities Catalog

Commonly Used Repositories

https://cwe.mitre.org/
https://cve.mitre.org/
https://nvd.nist.gov/
https://www.cisa.gov/known-exploited-vulnerabilities-catalog

1. Imprecise Descriptions – CWE & CVE

2. Unclear Causality – CWE & CVE

3. No Tracking Methodology – CVE

4. Gaps in Coverage – CWE

5. Overlaps in Coverage – CWE

6. No Tools – CWE & CVE

Repository Problems

● Example:

CWE-502: Deserialization of Untrusted Data:

The application deserializes untrusted data without
sufficiently verifying that the resulting data will be valid.

o Unclear what “sufficiently” means,

o “verifying that data is valid” is also confusing

Problem #1: Imprecise Descriptions

● Example:

CVE-2018-5907
Possible buffer overflow in msm_adsp_stream_callback_put due to lack of input
validation of user-provided data that leads to integer overflow in all Android releases
(Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the Linux kernel.

→ the NVD label is CWE-190

While the CWEs chain is:
CWE-20 → CWE-190 → CWE-119

Problems #2, #3: Unclear Causality, Tracking

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5907
http://cwe.mitre.org/data/definitions/190.html

● Example:

CWEs coverage of buffer overflow by:

✓ Read/ Write

✓ Over/ Under

✓ Stack/ Heap

Problems #4, #5: Gaps/Overlaps in Coverage

Over Under Either End Stack Heap
Read CWE-127 CWE-126 CWE-125

Write CWE-124 CWE-120
CWE-123
CWE-787

CWE-121 CWE-122

Read/ Write CWE-786 CWE-788

The Bugs Framework
(BF)

Example:

CVE versus BF
Descriptions of
Heartbleed

CVE-2014-0160 The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat
Extension packets, which allows remote attackers to obtain sensitive information from process memory via crafted packets that
trigger a buffer over-read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug.

Heartbleed (CVE-2014-0160)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160

CVE-2014-0160 The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat
Extension packets, which allows remote attackers to obtain sensitive information from process memory via crafted packets that
trigger a buffer over-read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug.

Heartbleed (CVE-2014-0160)

1448 dtls1_process_heartbeat(SSL *s)

1449 {

1450 unsigned char *p = &s->s3->rrec.data[0], *pl;

1451 unsigned short hbtype;

1452 unsigned int payload;

1453 unsigned int padding = 16; /* Use minimum padding */

1454

1455 /* Read type and payload length first */

1456 hbtype = *p++;

1457 n2s(p, payload);

1458 pl = p;

...

1465 if (hbtype == TLS1_HB_REQUEST)

1466 {

1467 unsigned char *buffer, *bp;

...

1470 /* Allocate memory for the response, size is 1 byte

1471 * message type, plus 2 bytes payload, plus

1472 * payload, plus padding

1473 */

1474 buffer = OPENSSL_malloc(1 + 2 + payload + padding);

1475 bp = buffer;

1476

1477 /* Enter response type, length and copy payload */

1478 *bp++ = TLS1_HB_RESPONSE;

1479 s2n(payload, bp);

1480 memcpy(bp, pl, payload);

DVR
(Verify:

Missing, Data
(payload

length), Policy)

MAD
(Reposition,

Pointer, Object,
Size: Incon-

sistent Value)

Inconsistent
Value

MUS
(Read, Pointer:
Over Bounds,
Object, Size)

Over
Bounds

/* Naive implementation of memcpy

void *memcpy (void *dst, const void *src, size_t n)

{

 size_t i;

 for (i=0; i<n; i++)

 *(char *) dst++ = *(char *) src++;

 return dst;

}

Buffer
Overflow

plbp

payload

Caused by ill-formed dataCaused by the Bug

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160

DVR
(Verify:

Missing, Data
(payload

length), Policy)

MAD
(Reposition,

Pointer, Object,
Size: Incon-

sistent Value,
Size)

Inconsistent
Value

MUS
(Clear: Missing,
Pointer, Object,

Size)

Buffer
Overflow

Not Cleared
Object

Over
Bounds

Clear Causality in Heartbleed

MUS
(Read, Pointer:
Over Bounds,
Object, Size)

Information
Exposure

Buffer
Overflow

Caused by ill-formed data

Caused by the Bug

The Failure – caused by final error(s)

Operation Object
Mechanism:
• Sequential

Source Code:
• Codebase

(d1_both.c and tl_lib.c)

Execution Space:
• Userland

Location:
• Heap

Attributes
Operation Data

Mechanism:
• Quantity

Source Code:
• Codebase

(d1_both.c and tl_lib.c)

Execution
Space:
• Userland

State:
• Transferred
(via network)

ConsequenceCause

Improper Operation:
Missing

Improper Data:
Inconsistent Value

(for payload size)

DVR Operation

Verify

Attributes
Operation Pointer Object

Mechanism:
• Sequential

Source Code:
• Codebase

Execution Space:
• Userland

Span:
• Huge

Location:
• Heap

ConsequenceCause

Improper Operation:
Missing

Memory Error:
Not Cleared Object

MUS Operation

Clear

Attributes

ConsequenceCause

Improper Size:
Inconsistent Value (for size
of s→s3→rrec.data[0])

Improper Pointer:
Over Bounds

MAD Operation

Reposition

Attributes

Operation Pointer Object
Mechanism:
• Sequential

Source Code:
• Codebase

(d1_both.c and tl_lib.c)

Execution
Space:
• Userland

Span:
• Huge

Location:
• Heap

ConsequenceCause

Memory Error:
Buffer Overflow

MUS Operation

ReadImproper Pointer:
Over Bounds
(for s→s3→rrec.data[0])

BF Description of Heartbleed

Information
Exposure

A Weakness

The Bug

The Failure

BF Tool – Generated Machine-Readable
BF Heartbleed Description

Previously – Heartbleed (CVE-2014-0160)

The Bugs Framework
(BF)

Early Work

Next BF Classes

Missing Cornerstones

● Strict Definitions of:
○ Bug
○ Weakness
○ Vulnerability
○ Failure

● Clarity on:
○ Chaining Bugs/Weaknesses/Failures
○ Merging Chains

● Software Bug:
○ A coding error
○ Needs to be fixed

● Software Weakness – difficult to define:
o Caused by a bug or ill-formed data
o Weakness Type – a meaningful notion!

● Software Vulnerability:
○ An instance of a weakness type that leads to a security failure
o May have several underlying weaknesses

● Security failure:
o A violation of a system security requirement

I. Bojanova and C. Eduardo Galhardo, "Classifying Memory Bugs Using Bugs Framework Approach," 2021 IEEE 45th Annual
Computers, Software, and Applications Conference (COMPSAC), 2021, pp. 1157-1164, https://doi.org/10.1109/COMPSAC51774.2021.00159.

Terminology

https://doi.org/10.1109/COMPSAC51774.2021.00159

1. Solve the problems of imprecise descriptions and unclear causality

2. Solve the problems of gaps and overlaps in coverage

BF Goals

…

● BF describes a bug/weakness as:
○ An improper state

and
○ Its transition

● Improper State –

a tuple(operation, operand1, ... , operandn)

, where at least one element is improper

● Transition –

the result of the operation over the operands

Improper
State 2

Improper
State 2:

(operation 2,
operand 21, ...

operand 2i,
...)

BF Features – Clear Causal Descriptions

Improper
State 1

results in
Improper operand 2i

Improper
State 1

(operation 1
operand 11 ...

operand 1i
...)

Improper
State n

…

Intermediate State – caused by ill-formed data
– at least one operand is improper

Initial State – caused by the Bug
– the operation is improper

Failure

Final State – the Failure
– caused by a final error

Final
Error

● BF describes a vulnerability as:
○ A chain of improper states and their transitions
○ States change until a failure is reached

Improper
State 2

(operation 2
operand 2j

...)

BF Features – Chaining Weaknesses

Improper
State 1

(operation 1
operand 11 ...

operand 1i
...)

…

Improper
operand np

Improper
operand 2j

Improper
State n

(operation n
…

operand np
...)

Improper
operand 3k

Failure

Final
Error

Intermediate State – caused by ill-formed data
– at least one operand is improper

Initial State – caused by the Bug
– the operation is improper

Final State – the Failure
– caused by a final error

● How to find the Bug?
● Go backwards by operand until an operation is a cause

Improper
State 2

(operation 2
operand 2j

...)

BF Features – Backtracking

Improper
State 1

(operation 1
operand 11 ...

operand 1i
...)

…

Improper
operand np

Improper
operand 2j

Improper
State n

(operation n
…

operand np
...)

Improper
operand 3k

Failure

Final
Error

Intermediate State – caused by ill-formed data
– at least one operand is improper

Initial State – caused by the Bug
– the operation is improper

Final State – the Failure
– caused by a final error

BF Features – Converging Vulnerabilities

Improper
State 1

(operation 1
operand 11 ...

operand 1i
...)

…

Improper
operand 2i

Improper
State q’

(operation q’
…

operand q’k
...)

…

Improper
State n

(operation n
operand np ...
operand nm

...)

Final
Error’

Improper
operand np

Failure

Final
Error

Final
Error

Intermediate State – caused by ill-formed data
– at least one operand is improper

Initial State – caused by the Bug
– the operation is improper

Final State – the Failure
– caused by a final error

Improper
State 1’

(operation 1’
operand 1’1 ...

operand 1’i
...)

Improper
operand 2’i

Improper
operand q’k

● BF Class – a taxonomic category of a weakness type, defined by:

○ A set of operations

○ All valid cause → consequence relations

○ A set of attributes

BF Features – Classification

BF Features – Tools

● Creation of:
➢ BF classes diagrams
➢ BF-CWE di-graphs
➢ Vulnerabilities graphs

& diagrams

● Querying of:
➢ Vulnerabilities

BF – Defined

● BF is a …

➢ Structured

➢ Complete

➢ Orthogonal

➢ Language independent

classification of software bugs and weaknesses

BF – Bugs Models

● Example:

The BF Memory Bugs Model:

○ Four phases, corresponding to
the BF memory bugs classes:
MAD, MAL, MUS, MDL

○ Memory operations flow

BF Classes – Examples

Memory Addressing Bugs (MAD) Memory Use Bugs (MUS)Data Verification Bugs (DVR)

BF – Validation Towards CWE

● Input/Output CWEs (incl. Injection) –
mapped by BF DVL and BF DVR consequences

Example:

BF Chain for
“BadAlloc” Pattern

ICS Advisory (ICSA-21-119-04)

https://www.cisa.gov/uscert/ics/advisories/icsa-21-119-04
https://www.cisa.gov/uscert/ics/advisories/icsa-21-119-04

CVE-2021-21834 and
the Bad Allocation Chain

Attributes

Mechanism:
• Range

Source Code:
• Third Party (library
box_code_base.c)

Execution Space:
• Local

Data State:
• Stored (number of

entries read from file)

ConsequenceCause

Improper Operation:
Missing

Improper Data Value:
Inconsistent Value

(> max 64-bit int)

DVR Operation

Check
(u64)ptr->nb_entries >

(u64)SIZE_MAX/sizeof(u64))

Mechanism:
• Operator

(Arithmetic: ‘*’)

Source Code:
• Third Party (library
box_code_base.c)

Data Value Kind:
• Numeric

Data Type Kind:
• Structured

ConsequenceCause

Improper Data Value:
Wrong Argument

Improper Data Value:
Wrap Around

TCM Operation

Calculate
(ptr->nb_entries*sizeof(u64))

Attributes

Attributes

Mechanism:
• Explicit

Source Code:
• Third Party (library
box_code_base.c)

Execution
Space:
• Userland

Pointer
Ownership:
• Single

Object
Location:
• Heap

ConsequenceCause

Improper Data Value:
Wrong Size

(size of memory to allocate)

Improper Object Size:
Not Enough Allocated

MAL Operation

Allocate
(gf_malloc())

Attributes

Mechanism:
• Sequential

Source Code:
• Third Party (library
box_code_base.c)

Execution Space:
• Userland

Object Location:
• Heap

ConsequenceCause

Improper Object Size:
Not Enough Allocated

Improper Data Value:
Over Bounds Pointer

MAD Operation

Reposition

Attributes
Mechanism:
• Sequential

Source Code:
• Third Party (library
box_code_base.c)

Execution
Space:
• Userland

Pointer Span:
• Huge

Object
Location:
• Heap

ConsequenceCause

Improper Data Value:
Over Bounds Pointer

Memory Error:
Buffer Overflow

MUS Operation

Write

BF Tools Set

The BF vulnerabilities descriptions consist of bug-weaknesses-failure chains.

This tool would allow users to:

1. To create instances of bugs, weaknesses, and failures with specific cause,
operation, and consequence selections, connect these instances by
consequence-cause relationships, and specify attributes about each involved
operation and its operands. The resulting BF vulnerabilities' descriptions will
be in an XML .bf format adhering to a BF Vulnerability description XSD
schema.

2. To generate graphical PPTX representations of BF vulnerabilities descriptions
via XSLT transformations.

3. To edit and query generated BF vulnerabilities descriptions.

I. Editor of BF Vulnerabilities Descriptions

1. BF.xml – all BF Clusters of Classes

1. BF Editor
Bug/Weakness/Failure

DVR
(Verify:

Missing, Data
(payload

length), Policy)

MAD
(Reposition,

Pointer, Object,
Size: Inconsis-

tent Value)

Inconsistent
Value

MUS
(Clear: Missing,
Pointer, Object,

Size)

Buffer
Overflow

Not Cleared
Object

Over Bounds
Pointer

2. Generated Graphical Representation of
BF Heartbleed Description

MUS
(Read, Pointer:
Over Bounds,
Object, Size)

IEX
(Buffer

Overflow)

Caused by ill-formed data

Caused by the Bug

The Failure – caused by final error(s)

Improper Address:
Over Bounds Pointer
(for s→s3→rrec.data[0])

Improper Data Value:
Not Cleared ObjectOperation Object

Mechanism:
• Sequential

Source Code:
• Codebase
(d1_both.c and tl_lib.c)

Execution Space:
• Userland

Location:
• Heap

Attributes
Operation Data

Mechanism:
• Quantity

Source Code:
• Codebase
(d1_both.c and tl_lib.c)

Execution
Space:
• Admin

State:
• Transferred
(via network)

ConsequenceCause

Improper Operation:
Missing

Improper Data Value:
Inconsistent Value

(for payload size)

DVR Operation

Verify

Attributes
Operation Pointer Object

Mechanism:
• Sequential

Source Code:
• Codebase
(other software)

Execution Space:
• Userland

Span:
• Huge

Location:
• Heap

ConsequenceCause

Improper Operation:
Missing

Improper Data Value:
Not Cleared Object

MUS Operation

Clear

Attributes

ConsequenceCause

Inconsistent Value:
Wrong Size Used
(for s→s3→rrec.data[0])

Improper Address:
Over Bounds Pointer

MAD Operation

Reposition

Attributes

Operation Pointer Object
Mechanism:
• Sequential

Source Code:
• Codebase
(d1_both.c and tl_lib.c

and other software)

Execution Space:
• Userland

Span:
• Huge

Location:
• Heap

ConsequenceCause

Memory Error:
Buffer Overflow

MUS Operation

Read

2. Detailed Graphical Representation of
the BF Heartbleed Description

Information
Exposure (IEX):
Buffer Overflow

A Weakness

The Bug

The Failure

• Edit generated BF vulnerabilities descriptions.

• Allow BF vulnerabilities descriptions that
converge two or more chains via "and/or" conjunctions.

• Query BF vulnerabilities' descriptions by:
✓ Class

✓ Operation

✓ Cause

✓ Consequence

✓ Attributes

✓ and combinations of such.

3. Edit and Query BF Descriptions

This tool will allow BF developers collaborators to:

1. To create descriptions of BF classes with sets of values for each class causes,
operations, and consequences, as well as of matrices with meaningful cause-
operation-consequences combinations. The resulting BF classes descriptions
will be in XML format adhering to a BF classes XSD schema and can be used
by software assurance tools developers to report found bugs and
weaknesses, as well as to provide precise vulnerabilities' descriptions.

2. To generate graphical representations of BF classes from the XML
descriptions via XSLT transformations. The graphical representations will be in
PowerPoint .pptx format.

3. To generate BF-CWEs relational di-graphs for validation of newly developed
BF classes towards the flawed, but widely used CWE.

II. Editor of BF Classes and BF Clusters

• Create descriptions of BF classes
with sets of values for each
class causes, operations, and consequences.

• Create matrices with meaningful
cause-operation-consequences combinations.

1. BF Classes and Matrices of
Cause-Operation-Consequences

2. Generated Graphical Representations of
the BF TCV & TCM Classes

Type Conversion Bugs (TCV) Type Compute Bugs (TCM)

Attributes

Improper Data Value:
• Under Range
• Over Range
• Flipped Sign

Improper Operation:
• Missing
• Wrong

• Cast
• Coerce

ConsequencesCauses TCV Operations

Improper Data Value:
• Wrong Result
• Truncated Value
• Distorted Value
• Rounded Value

Improper Data Type:
• Wrong Type

Improper Data Type:
• Wrong Type
• Mismatched Argument

Improper Function
Implementation:

• Missing Overload

Mechanism:
• Pass In
• Pass Out

Source Code:
• Codebase
• Third Party
• Standard Library
• Processor

Data Value Kind:
• Numeric
• Text
• Pointer
• Boolean

Data Type Kind:
• Primitive
• Structured

Attributes

Improper Operation:
• Wrong
• Erroneous

• Calculate
• Evaluate

ConsequencesCauses TCM Operations

Improper Data Value:
• Under Range
• Over Range
• Flipped Sign
• Wrong Result
• Wrap Around

Improper Data Type:
• Wrong Type

Mechanism:
• Function
• Operator
• Method
• Lambda

Expression
• Procedure

Source Code:
• Codebase
• Third Party
• Standard Library
• Processor

Data Value Kind:
• Numeric
• Text
• Pointer
• Boolean

Data Type Kind:
• Primitive
• Structured

Improper Data Value:
• Wrong Object
• Reference vs. Object
• Wrong Argument

Improper Function
Implementation:

• Wrong Function
• Wrong Generic Function

Wrong Overridden Function
• Wrong Overloaded Function

Type Compute Error:
• Undefined (div by 0)

3. CWEs Relate to BF Clusters

Generated Graphical Representations of
the Input/Output Cljuster Mappings to CWE

BF – Potential Impact

● Allow precise communication
about software bugs and weaknesses

● Help identify exploit mitigation techniques

BF – Potential Impacts

BF

Government

Academia

Industry

BF Addresses a Unique Need

● JHU APL – Automated Vulnerability Testing via Executable Attack Graphs:

o Chain vulnerabilities via logical directed graphs

o Determine most mitigation “paths” with least changes

o Detect user behavior prior to malicious effect

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9138852

● RIT Secure and Trustworthy Cyberspace (SaTC):
o Projects on Vulnerabilities Research

BF Addresses a Unique Need

https://research.njit.edu/secure-and-trustworthy-cyberspace-satc

● INMETRO
● LLNL
● BIECO
● Fraunhofer IESE
● CSA
● University of Greenwich
● Carnegie Mellon University
● St. John’s University
● University of West Attica
● Ericsson
● Anchore Inc.

More Interest and Support

Latest BF Publications

Questions

Irena Bojanova: irena.bojanova@nist.gov

	Slide 1: The NIST Bugs Framework (BF)
	Slide 2: My Background Quite Excited about BF
	Slide 3: Agenda
	Slide 4: Existing Repositories
	Slide 5: Commonly Used Repositories
	Slide 6: Repository Problems
	Slide 7: Problem #1: Imprecise Descriptions
	Slide 8: Problems #2, #3: Unclear Causality, Tracking
	Slide 9: Problems #4, #5: Gaps/Overlaps in Coverage
	Slide 10: The Bugs Framework (BF)
	Slide 11: Example: CVE versus BF Descriptions of Heartbleed
	Slide 12: Heartbleed (CVE-2014-0160)
	Slide 13: Heartbleed (CVE-2014-0160)
	Slide 14: Clear Causality in Heartbleed
	Slide 15: BF Description of Heartbleed
	Slide 16: BF Tool – Generated Machine-Readable BF Heartbleed Description
	Slide 17: Previously – Heartbleed (CVE-2014-0160)
	Slide 18: The Bugs Framework (BF)
	Slide 19: Early Work
	Slide 20: Next BF Classes
	Slide 21: Missing Cornerstones
	Slide 22: Terminology
	Slide 23: BF Goals
	Slide 24: BF Features – Clear Causal Descriptions
	Slide 25: BF Features – Chaining Weaknesses
	Slide 26: BF Features – Backtracking
	Slide 27: BF Features – Converging Vulnerabilities
	Slide 28: BF Features – Classification
	Slide 29: BF Features – Tools
	Slide 30: BF – Defined
	Slide 31: BF – Bugs Models
	Slide 32: BF Classes – Examples
	Slide 33: BF – Validation Towards CWE
	Slide 34: Example: BF Chain for “BadAlloc” Pattern
	Slide 35: ICS Advisory (ICSA-21-119-04)
	Slide 36: CVE-2021-21834 and the Bad Allocation Chain
	Slide 37: BF Tools Set
	Slide 38: I. Editor of BF Vulnerabilities Descriptions
	Slide 39: 1. BF.xml – all BF Clusters of Classes
	Slide 40: 1. BF Editor
	Slide 41: 2. Generated Graphical Representation of BF Heartbleed Description
	Slide 42: 2. Detailed Graphical Representation of the BF Heartbleed Description
	Slide 43: 3. Edit and Query BF Descriptions
	Slide 44: II. Editor of BF Classes and BF Clusters
	Slide 45: 1. BF Classes and Matrices of Cause-Operation-Consequences
	Slide 46: 2. Generated Graphical Representations of the BF TCV & TCM Classes
	Slide 47: 3. CWEs Relate to BF Clusters
	Slide 48: Generated Graphical Representations of the Input/Output Cljuster Mappings to CWE
	Slide 49: BF – Potential Impact
	Slide 50: BF – Potential Impacts
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Latest BF Publications
	Slide 55: Questions

