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The BF Memory Bugs Model
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MAD – Memory Addressing Bugs

MAL – Memory Allocation Bugs

MUS – Memory Use Bugs

MDL – Memory Deallocation Bugs 



MAD – Memory Addressing Bugs
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Owner:
• Pointer
• Reference

Operation:
• Initialize
• Reposition
• Reassign

Source Code: 
• Codebase
• Third Party
• Standard Library
• Processor

Execution Space:
• Userland
• Kernel
• Bare-Metal
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MAL – Memory Allocation Bugs
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MUS – Memory Use Bugs
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MDL – Memory Deallocation Bugs
Operation:
• Deallocate
• Reduce
• Reallocate

Mechanism:
• Implicit
• Explicit

Source Code: 
• Codebase
• Third Party
• Standard Library
• Processor

Execution Space:
• Userland
• Kernel
• Bare-Metal

Owner:
• Pointer
• Reference
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• CVE description: An issue was discovered in the smallvec crate before 0.6.3 
for Rust. The Iterator implementation mishandles destructors, leading to a 
double free.

Example 1: CVE-2018-20991



BF MDL Description of CVE-2018-20991

Operation:
• Deallocate
Mechanism:
• Explicit
Source Code: 
• Standard Library 
Execution Space:
• Userland

Owner:
• Pointer

object:
• Data Structure
#Owners:
• Multiple

Location:
• Heap

Memory Error

Double Free
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Dangling Pointer
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Operation:
• Deallocate
Mechanism:
• Explicit



• CVE description: OpenSLP releases in the 1.0.2 and 1.1.0 code streams have a 
heap-related memory corruption issue which may manifest itself as a denial-
of-service or a remote code-execution vulnerability.

Example 2: CVE-2017-17833



CVE-2017-17833
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Owner:
• Pointer (result)
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• Reallocate  (realloc(*send_buf))

Mechanism:
• Explicit

Source Code: 
• Codebase  (slpd_process.c)
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• CVE description: The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 
before 1.0.1g do not properly handle Heartbeat Extension packets, which 
allows remote attackers to obtain sensitive information from process memory 
via crafted packets that trigger a buffer over-read, as demonstrated by 
reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed 
bug. 

Example 3: CVE-2014-0160 – Heartbleed



CVE-2014-0160 – Heartbleed
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