
Memory Bugs Classes in 
NIST Bugs Framework (BF)
 

Handouts

HCSS 2020

09/15/2020

Irena Bojanova, NIST 

Carlos Galhardo, INMETRO



The BF Memory Bugs Model

MUS

MAD

MAL

MDL

Read

other object 
/ NULL

object 
lifetime

object
space

Extend

assign & 
position

Initialize

first write

Reassign

Reduce

Reallocate

Deallocate

++, --, etc.

Allocate

Reposition

last write
ClearWriteInitialize

Dereference

upper 
bound

lower 
bound

create
object object in 

use

destroy
object

Reallocate

object 
size

MAD – Memory Addressing Bugs

MAL – Memory Allocation Bugs

MUS – Memory Use Bugs

MDL – Memory Deallocation Bugs 



MAD – Memory Addressing Bugs

Improper object

Improper Owner

Improper Operation

Erroneous

Wrong

Missing

Specific Address 
Pointer

Wild Pointer

Untrusted Pointer

Dangling Pointer

NULL Pointer

Wrong Position  
Pointer

Wrong Type 
Pointer

Attributes

Owner:
• Pointer
• Reference

Operation:
• Initialize
• Reposition
• Reassign

Source Code: 
• Codebase
• Third Party
• Standard Library
• Processor

Execution Space:
• Userland
• Kernel
• Bare-Metal

object:
• Primitive
• Data Structure

Location:
• Stack
• Heap
• Uninitialized 

Data  Segment
• Data Segment
• Code Segment
• Shared Segment

ConsequencesCauses

Wild Pointer

NULL Pointer

Wrong Position  
Pointer

Dangling Pointer

Casted Pointer

Forbidden Address 
Pointer

Untrusted Pointer

Improper Owner 
for Next Operation

Over Bounds 
Pointer

Under Bounds 
Pointer

Wrong Size 
for object

Not Enough 
for object 



MAL – Memory Allocation Bugs

Operation:
• Allocate
• Extend
• Reallocate

Mechanism:
• Implicit
• Explicit

Source Code: 
• Codebase
• Third Party
• Standard Library
• Processor

Execution Space:
• Userland
• Kernel
• Bare-Metal

Owner:
• Pointer
• Reference

Memory Overflow

Wild Pointer

NULL Pointer

Partially Allocated 
object

object:
• Primitive
• Data Structure

#Owners:
• None
• Single
• Multiple

Location:
• Stack
• Heap
• (...)

Improper Owner 
for Next Operation

Improper object 
for Next Operation

Not Enough 
for object

Memory Error

Memory Leak

Double Free

object Data 
Corruption

Improper Owner

Wild Pointer

Dangling Pointer

Program Crash

System Crash

Software Collapse

Wrong Position  
Pointer

Improper object

Improper Operation

Erroneous

Wrong

Missing

Attributes ConsequencesCauses

Wrong Size 
for object

Already Allocated 
object

Specific Address 
Pointer

Forbidden Address 
Pointer



MUS – Memory Use Bugs

Not Initialized 
object

Not Cleared object

Untrusted Pointer 
Dereference

NULL Pointer 
Dereference

Pointer-object 
Type Confusion

Pointer Use After 
Free object

object (Buffer) 
Overflow

object (Buffer) 
Underflow

Uninitialized  
Pointer Dereference

Wrong Size 
for object

Operation:
• Initialize
• Dereference
• Read
• Write
• Clear

Excursion:
• Direct
• Sequential

Source Code: 
• Codebase
• (....)

Execution Space:
• Userland
• Kernel
• Bare-Metal

Owner:
• Pointer
• Reference

Improper object

Not Enough 
for object 

Partially Allocated 
object

object:
• Primitive
• Data Structure

Size: 
• Little
• Moderate
• Huge

Location:
• Stack
• Heap
• (...)

Memory Error

Improper Owner

Over Bounds 
Pointer

Wild Pointer

Casted Pointer

Dangling Pointer

NULL Pointer

Untrusted Pointer

Under Bounds 
Pointer

Forbidden Address 
Pointer

Improper Operation

Erroneous

Wrong

Missing

Attributes ConsequencesCauses

Program Crash

System Crash

Software Collapse

object Data 
Corruption

Wrong Position  
Pointer



MDL – Memory Deallocation Bugs
Operation:
• Deallocate
• Reduce
• Reallocate

Mechanism:
• Implicit
• Explicit

Source Code: 
• Codebase
• Third Party
• Standard Library
• Processor

Execution Space:
• Userland
• Kernel
• Bare-Metal

Owner:
• Pointer
• Reference

NULL Pointer 

object:
• Primitive
• Data Structure

#Owners:
• None
• Single
• Multiple

Location:
• Stack
• Heap
• (…)

Improper Owner 
for Next Operation

Improper object 
for Next Operation
Not Enough 
for object

Memory Error

Memory Leak

object Data 
Corruption

Forbidden Address 
Pointer

Improper Owner

Wild Pointer

Specific Address 
Pointer
Wrong Position  
Pointer

Improper Operation

Erroneous

Wrong

Missing

Attributes ConsequencesCauses

Program Crash

System Crash

Software Collapse

Improper object

Partially Allocated 
object

Wrong Size 
for object

Operation:
• Deallocate

Dangling Pointer

Double Free



• CVE description: An issue was discovered in the smallvec crate before 0.6.3 
for Rust. The Iterator implementation mishandles destructors, leading to a 
double free.

Example 1: CVE-2018-20991



BF MDL Description of CVE-2018-20991

Operation:
• Deallocate
Mechanism:
• Explicit
Source Code: 
• Standard Library 
Execution Space:
• Userland

Owner:
• Pointer

object:
• Data Structure
#Owners:
• Multiple

Location:
• Heap

Memory Error

Double Free

Improper Owner

Dangling Pointer

MDL Attributes ConsequenceCause

Operation:
• Deallocate
Mechanism:
• Explicit



• CVE description: OpenSLP releases in the 1.0.2 and 1.1.0 code streams have a 
heap-related memory corruption issue which may manifest itself as a denial-
of-service or a remote code-execution vulnerability.

Example 2: CVE-2017-17833



CVE-2017-17833

Improper Operation

Missing

MAD Attributes

Owner:
• Pointer (result)

Operation:
• Reposition

Source Code: 
• Codebase (slpd_process.c)

Execution Space:
• Userland

object:
• Data Structure (array: *result)

Location:
• Heap

MAD ConsequenceMAD Cause

Dangling Pointer

Improper Owner 
for Next Operation

Operation:
• Reallocate  (realloc(*send_buf))

Mechanism:
• Explicit

Source Code: 
• Codebase  (slpd_process.c)

Execution Space:
• Userland

Owner:
• Pointer (send_buf&result)

object:
• Data Structure (array: *result)

#Owners:
• Multiple

Location:
• Heap

Memory Error

Double Free

Improper Owner

Dangling Pointer

MAL Attributes

MAL ConsequenceMAL Causechain



• CVE description: The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 
before 1.0.1g do not properly handle Heartbeat Extension packets, which 
allows remote attackers to obtain sensitive information from process memory 
via crafted packets that trigger a buffer over-read, as demonstrated by 
reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed 
bug. 

Example 3: CVE-2014-0160 – Heartbleed



CVE-2014-0160 – Heartbleed

Not Cleared object

Operation:
• Clear

Excursion:
• Sequential

Source Code: 
• Codebase (d1_both.candt1_lib.c) 

Execution Space:
• Userland

Owner:
• Pointer
• Reference

object:
• Data Structure

Size: 
• Little
• Moderate
• Huge

Location:
• Heap

Memory ErrorImproper Operation

Missing

MUS Attributes ConsequencesCauses

object (Buffer) 
Overflow

Operation:
• Read

Excursion:
• Sequential

Source Code: 
• Codebase (d1_both.candt1_lib.c) 

Execution Space:
• Userland

Owner:
• Pointer (plxxx???) 

object:
• Data Structure

Size: 
• Huge

Location:
• Heap

Memory ErrorImproper object

Wrong Size object

MUS Attributes ConsequencesCauses



irena.bojanova@nist.gov 

cegalhardo@inmetro.gov.br

BF Web Site: https://samate.nist.gov/BF/

Contact Us

mailto:irena.bojanova@nist.gov
mailto:cegalhardo@inmetro.gov.br
https://samate.nist.gov/BF/

	Slide 1: Memory Bugs Classes in  NIST Bugs Framework (BF)   Handouts  
	Slide 2: The BF Memory Bugs Model
	Slide 3: MAD – Memory Addressing Bugs
	Slide 4: MAL – Memory Allocation Bugs
	Slide 5: MUS – Memory Use Bugs
	Slide 6: MDL – Memory Deallocation Bugs
	Slide 7: Example 1: CVE-2018-20991
	Slide 8: BF MDL Description of CVE-2018-20991
	Slide 9: Example 2: CVE-2017-17833
	Slide 10: CVE-2017-17833
	Slide 11: Example 3: CVE-2014-0160 – Heartbleed
	Slide 12: CVE-2014-0160 – Heartbleed
	Slide 13: Contact Us

