Session

Session VI: Communications

Location

Utah State University, Logan, UT

Abstract

Satellites in low-Earth orbit (LEO) have on-board sensors that can generate large amounts of data to be delivered to a ground user. Direct-to-Earth delivery from LEO is challenging because of the sparse contact with a ground terminal, but the short link distances involved can enable very high data rates by exploiting the abundance of spectrum available at optical frequencies. We provide an overview and update of NASA’s Terabyte Infrared Delivery (TBIRD) program, which will demonstrate a direct-to-Earth laser communication link from a small satellite platform to a small ground terminal at burst rates up to 200Gbps. Such a link is capable of transferring several terabytes per day to a single ground terminal. The high burst rates are achieved by leveraging off-the-shelf fiber-telecommunications transceivers for use in space applications. A 2U TBIRD payload is currently being developed for flight on a 6U NASA CubeSat.

Share

COinS
 
Aug 6th, 4:45 PM

NASA’s Terabyte Infrared Delivery (TBIRD) Program: Large-Volume Data Transfer from LEO

Utah State University, Logan, UT

Satellites in low-Earth orbit (LEO) have on-board sensors that can generate large amounts of data to be delivered to a ground user. Direct-to-Earth delivery from LEO is challenging because of the sparse contact with a ground terminal, but the short link distances involved can enable very high data rates by exploiting the abundance of spectrum available at optical frequencies. We provide an overview and update of NASA’s Terabyte Infrared Delivery (TBIRD) program, which will demonstrate a direct-to-Earth laser communication link from a small satellite platform to a small ground terminal at burst rates up to 200Gbps. Such a link is capable of transferring several terabytes per day to a single ground terminal. The high burst rates are achieved by leveraging off-the-shelf fiber-telecommunications transceivers for use in space applications. A 2U TBIRD payload is currently being developed for flight on a 6U NASA CubeSat.