Leach, Stacy

From:

Nick Driban <ndriban@LENHARTTRAFFIC.COM>

Sent:

Sunday, November 25, 2018 12:36 PM

To:

Leach, Stacy

Cc:

Conklin, Christopher; Bossi, Andrew; mlenhart

Subject:

RE: Updated LATIP Study

Attachments:

LATIP Memo Updated 20181112.pdf; Cut Through Memo 20181121.pdf

Stacy,

I've attached two traffic analysis memorandums that I would like to have entered into the Hillandale LATIP record. The two memos are as follows:

- 1. 'LATIP Memo Updated 20181112' This document provides an updated analysis on the LATIP improvements, based on the memorandum that was previously approved by the Maryland State Highway Administration (SHA) and Montgomery County Department of Transportation (MCDOT). It was submitted to Chris Conklin and Andrew Bossi at MCDOT in the week leading up to the hearing, so it may have already been entered into the record by them, but I'm submitting it directly to you in case it has not been. This is the most up-to-date assessment of the benefits of the proposed improvements package. The cover letter details the necessity of this update as well as changes from the analyses previously approved by SHA and MCDOT.
- 2. 'Cut Through Memo 20181121' This document was prepared as a response to concerns about cut-through traffic raised by the community prior to and during the hearing. As detailed in the document, while we believe the traffic calming measures already included along Elton Road as part of the slip ramp improvement will address the majority of community concerns, should the County elect to include additional changes to mitigate cut-through concerns we believe the recommendations in the attached memo are the optimal solution (to reduce cut-through traffic while maintaining the benefits at the intersection of MD 650 & Powder Mill Road).

Thanks, Nick

Nick Driban, P.E., PTOE Associate Vice President

Office: (410) 216-3333 (Ext. 105)

Mobile: (410) 294-7195

LENHART TRAFFIC CONSULTING, INC.

645 BALTIMORE ANNAPOLIS BLVD, SUITE 214

SEVERNA PARK, MD 21146

www.lenharttraffic.com

		š	

Transportation Planning & Traffic Engineering

November 12, 2018

Ms. Stacy Leach Montgomery County Department of Transportation 101 Monroe Street, 10th Floor Rockville, Maryland 20850

Re: REVISED White Oak LATIP Supplemental Transportation Analysis – Proposed Improvements at MD 650 (New Hampshire Avenue) & Powder Mill Road/Elton Road

Dear Ms. Leach:

This letter is being prepared to provide an executive summary and additional context related to the attached memorandum detailing the *REVISED White Oak LATIP Supplemental Analysis – MD 650 & Powder Mill Road.* The attached memorandum represents the most recent revision to a series of analyses conducted in support of the improvements proposed in the Hillandale area as part of the White Oak LATIP. This revision is necessary in order to provide an updated assessment of the benefits of the proposed improvements package which is being considered in the Public Hearing scheduled for November 15, 2018. Included herein is a brief history of the LATIP analyses in this area and a summary of the findings of this current revision to the analyses.

On February 14, 2017, the Montgomery County Council passed the Local Area Transportation Improvement Program (LATIP) for the White Oak Science Gateway area. As part of Council approval, \$5,000,000 for work was assigned to the MD 650/Powder Mill Road intersection for traffic operations improvements, but specific improvements were not identified. At the time, specific improvements were not identified in this area because there were some anomalies noted in the original analysis conducted in support of the LATIP which resulted in recommendations that differed substantially from the White Oak Science Gateway Master Plan and from trip analyses previously conducted by the Maryland State Highway Administration (SHA).

The specific anomalies identified in the original LATIP analysis included the omission of a substantial volume of u-turning traffic along northbound MD 650 at Powder Mill Road, as well as the incorrect coding of volumes within the traffic model for the northbound through movement along MD 650 at Powder Mill Road. Based on the original analysis conducted with these anomalies, the recommended LATIP improvement at the intersection of MD 650 at Powder Mill Road was the addition of a northbound right-turn lane, which the original analysis showed would reduce the average delay at the intersection to less than 80 seconds (the threshold for acceptable operations for the area according to the LATIP). However, when the anomalies in the traffic analysis were corrected, the new analysis showed that the recommended addition of the northbound right-turn lane did not, in fact, improve average delay to less than 80 seconds at the intersection. Further, as noted in the discussion above, the northbound right-turn lane was not consistent with the proposed Master Plan improvements at the intersection.

Based on these findings, a supplemental analysis was conducted by Lenhart Traffic Consulting in the spring of 2017 in order to determine improvements that would reduce delay for the MD 650 at Powder Mill Road intersection to less than the 80 second threshold, thereby meeting the LATIP adequacy requirement. The starting point for addressing the identified traffic operations issue in the supplemental analysis was the consideration of the Master Planned improvements. The Master Plan improvements call for, "from Holly Hall, add an eastbound left-turn lane; on Powder Mill Road, add a

Transportation Planning & Traffic Engineering

westbound right-turn lane; and on MD 650, add a southbound left-turn lane." The eastbound left-turn lane and westbound right-turn lane were included in the proposed improvement package in the supplemental analysis document, as construction of these improvements appeared to be feasible with limited impacts to the surrounding land uses. In contrast, the Master Plan recommended southbound left-turn lane was not included in the improvements package analysis as it was determined that its construction would be so materially impactful and require such significant takings of land (e.g. the properties to the northeast, northwest and southeast would all be significantly impacted including impacts to existing parking and structures) that this improvement would simply be too costly and infeasible in the short, intermediate, and likely long terms.

Traffic analysis was therefore conducted with the two, viable identified improvements along Powder Mill only, however the results showed that the intersection would not operate below the 80 second delay threshold without additional improvements. As such, and in order to address the unsafe uturn traffic along northbound MD 650 at Powder Mill Road that was omitted from the original LATIP analysis, the slip-ramp from Elton Road was added to the two proposed improvements at the Powder Mill Road intersection. The reason for this improvement, as stated in the supplemental analysis, was to address the need to provide an alternate route to keep northbound u-turning traffic seeking to access the ramp to westbound I-495 (The Capital Beltway) away from the problematic intersection of MD 650 at Powder Mill Road in order to provide more 'green time' to the tremendous volume of vehicles traveling along MD 650. While other improvements at the intersection of MD 650 at Powder Mill Road were considered in lieu of the slip ramp, the close proximity of businesses along the northbound- and southbound approaches to the intersection simply left little room for any further improvement to take place directly at the intersection; stated differently, there are limited reasonable, feasible improvements at the intersection of MD 650 at Powder Mill Road beyond the Master Plan improvements along the eastbound- and westbound approaches to the intersection, which re included as part of the proposed package. The results of the supplemental analysis showed that with the improvements along eastbound and westbound Powder Mill Road, as well as the slip ramp, the intersection of MD 650 at Powder Mill Road would operate with delay below 80 seconds.

IT IS IMPORTANT TO NOTE that all supplemental analyses conducted prior to the version in the attached memo assumed that the only traffic reassigned to the Elton Road slip ramp was the northbound u-turning vehicles at the intersection of MD 650 at Powder Mill Road (shown on Exhibit 8a in the attached memo). The assumption to only reassign this volume was made in order to provide the most conservative analysis for agency review (SHA & MCDOT). Even with this highly conservative analysis, the improvements at the intersection of MD 650 at Powder Mill Road were shown to be so substantial (and with nearly no impact to the intersection of MD 650 at Elton Road) that both SHA and MCDOT concurred with the findings and recommendations of the analysis.

THE PURPOSE OF THE ATTACHED REVISED SUPPLEMENTAL ANALYSIS is to provide a more realistic analysis of the proposed improvements package. Specifically, it is likely that with the implementation of the Elton Road slip ramp, a substantial portion of the traffic that currently exits the north side of the shopping center located in the southeast corner of the MD 650 at Powder Mill Road intersection and turns left onto Powder Mill Road before turning left onto New Hampshire Avenue would instead exit the southside of the shopping center to turn right onto Elton Road and immediately access the new slip ramp (see Exhibit 8b in the attached memo). A traffic count was conducted to determine what proportion of the *total* left-turn volume from westbound Powder Mill Road onto MD

Transportation Planning & Traffic Engineering

650 is traffic that exits the north end of the shopping center and makes this movement in order to access the I-495 ramp. The results of this count indicated that approximately 20% of the *total* westbound left-turn volume from Powder Mill road onto New Hampshire Avenue comes from the shopping center. While it is believed that if given the opportunity the vast majority of this traffic would instead choose to exit the south side of the shopping center to utilize the Elton Road slip ramp, for the purposes of providing a conservative (but more reasonable analysis) it was assumed that 75% of the traffic making this movement would divert to the proposed slip ramp. This equates to a diversion of only 15% of the total westbound left-turns from Powder Mill Road onto New Hampshire Avenue (75% x 20% = 15%) and the resulting diverted volume is shown on Exhibit 8b of the attached memo (this analysis remains conservative in not accounting for any trips originating from within Hillandale currently exiting Green Forest Drive which could also utilize the ramp if given the opportunity).

Based on the assumptions documented above, as shown on Exhibit 9 of the attached memo the proposed improvements are projected to decrease delay for the intersection of MD 650 at Powder Mill Road by 40% in the AM peak hour and 45% in the PM peak hour compared to the No Build, with no measurable degradation in the level of service (LOS 'A') for the MD 650 at Elton Road intersection. THIS SIGNIFICANT IMPROVEMENT RESULTS with no diversion assumed through the neighborhood, but instead with traffic only diverted from the northbound u-turns and the shopping center traffic turning left onto Powder Mill Road and left onto MD 650 in order to access I-495 west. The proposed improvements package is also shown to decrease peak hour travel times along MD 650 by between 14% and 66%, and to substantially reduce delay to all vehicles in the area.

Importantly, the substantial improvements in traffic operations at the intersection of MD 650 at Powder Mill Road, as well as for vehicles along MD 650 and within the overall study area are likely to negate some amount of the cut-through traffic that has been a perennial concern to neighbors along Elton Road and Wooded Way. As traffic moves more freely along the major roadways and through the larger intersections designed to handle it, the incentive to find alternate routes through local streets is decreased. To the degree cut-through traffic is an existing issue for the neighborhood, traffic calming remedies are included as part of the proposed improvements package which have the ability to further reduce the desirability of this maneuver, thereby mitigating cut-through traffic.

Based on the findings of the attached *REVISED White Oak LATIP Supplemental Analysis – MD 650 & Powder Mill Road*, as well as the information contained in this letter, it is recommended that the proposed improvements included in the attached memo be approved and carried forward for design and construction as part of the White Oak LATIP.

Sincerely,

Michael Lenhart, P.E., PTOE

mel In the

President

Enclosure: REVISED White Oak LATIP Supplemental Analysis - MD 650 & Powder Mill Road

Transportation Planning & Traffic Engineering

Memorandum:

Date:

November 12, 2018

TO: Mr. Chris Conklin

Montgomery County DOT 101 Monroe Street, #10 Rockville, MD 20850 FROM: Mike Lenhart

RE:

REVISED White Oak LATIP Supplemental Analysis – MD 650 & Powder Mill Road

As part of this analysis, two scenarios were evaluated including:

- Total Conditions with no improvements (No Build) to intersection geometry and timings.
- Total Conditions with the following improvements:
 - 1. An additional EB left-turn lane (including modifications to existing lane use) and WB right-turn lane at the intersection of MD 650 & Powder Mill Road. Note that a dedicated WB right-turn lane at the intersection of MD 650 & Powder Mill Road is present under Existing Conditions, however, the westbound right turn lane is only 50' long. This is far shorter than a typical turn lane and is completely unusable because access to the right turn lane is blocked by queues in the adjacent lanes. Therefore, this 50' lane was not treated as a right turn lane in the analysis of existing geometrics.
 - 2. A slip ramp at the intersection of MD 650 & Elton Road to provide direct access from Elton Road to I-495 WB.
 - 3. Traffic calming along Elton Road in order to reduce speeds and enhance safety.

The following intersections were analyzed as part of this analysis including:

- 1. MD 650 & Powder Mill Road
- 2. MD 650 & Elton Road

In addition to this memo, the following exhibits and appendices have been included:

Exhibit 1

Presents a location map and shows the study intersections.

Exhibit 2

Provides the existing lane use and traffic controls devices.

Exhibit 3

Includes the existing peak hour traffic volumes at the intersections. Note that these counts were taken from SHA's ITMS website, and are the same counts used in the LATIP analysis. It should be noted however that the LATIP analysis had two errors in their existing traffic counts. The LATIP study failed to include northbound and southbound MD 650 U-turns, and had an incorrect through volume for northbound MD 650 in the morning peak hour.

LENHART TRAFFIC CONSULTING, INC.

645 BALTIMORE ANNAPOLIS BLVD, SUITE 214
SEVERNA PARK, MD 21146
www.lenharttraffic.com

OFFICE: (410) 216-3333

FAX: (443) 782-2288
EMAIL: mlenhart@lenharttraffic.com

Transportation Planning & Traffic Engineering

Exhibit 4

Provides the 2040 background peak hour traffic volumes which were taken from the White Oak LATIP with the exception of the background growth in traffic on the west leg of MD 650 at Powder Mill Road in and out of the Holly Hall apartments. The growth in traffic on the west leg is calculated in Exhibits 5 and 6 as follows.

Exhibit 5

Contains the trip generation table for the Hillandale Gateway development. While the 2040 peak hour volumes from the White Oak LATIP generally accounted for traffic from planned developments in the area, in order to be conservative, trip generation and assignment were conducted separately for the Hillandale Gateway development as part of this study due to its immediate proximity to the study intersections and because it is one of the first sites planned for development in the White Oak LATIP area. Note that a trip credit was assumed for the existing 96 senior adult dwelling units. The proposed development is understood to consist of 146 senior adult dwelling units, 350 apartment units, and 24,500 square feet of shopping center.

Exhibit 6a-c

Exhibits 6a-6c detail the residential, retail, and pass-by trip assignments for the planned Hillandale Gateway development. The trip assignment is based on the net increase in trips over and above the existing use. It should be noted that a right-in/right-out driveway is planned for the site in addition to the access from the west leg of the MD 650 & Powder Mill Road intersection.

Exhibit 7

Combines the 2040 background peak hour traffic volumes shown on Exhibit 4 with the trip assignments shown on Exhibits 6a-6c to provide total traffic volumes.

Exhibits 8a-b

Shows the assumed traffic diversions as a result of the construction of a slip ramp which would provide direct access from Elton Road to I-495 WB.

Exhibit 8c

Combines the total traffic volumes shown on Exhibit 7 with the traffic diversions shown on Exhibits 8a-b to provide total peak hour volumes with diversions. Note that these volumes were used in the "Total with Improvements" scenario.

Exhibit 9

Provides a table showing Level of Service using the HCS methodology at the two study intersections. The LATIP uses an 80 second threshold for the determination of intersection adequacy. In addition, the table provides overall corridor measures of effectiveness including travel time along MD 650 between the Capital Beltway and north of Powder Mill Road, as well as the total delay experienced by all vehicles traveling in the area (based on the study area included within the traffic model).

Exhibit 10

Shows the proposed lane use and traffic control devices under the "Total with Improvements" scenario.

Appendix A

Provides supplemental information and turning movement counts.

Appendix B

Provides the Synchro/SimTraffic worksheets.

Appendix C

Includes concept design plans for the proposed improvements.

LENHART TRAFFIC CONSULTING, INC.

645 BALTIMORE ANNAPOLIS BLVD, SUITE 214 SEVERNA PARK, MD 21146 www.lenharttraffic.com

FAX: (443) 782-2288 EMAIL: mlenhart@lenharttraffic.com

OFFICE: (410) 216-3333

2 of 53

Transportation Planning & Traffic Engineering

The following information is a summary of the results of our analyses:

- ➤ Under Total Conditions without any improvements (No Build) to intersection geometry or timing, the signalized study intersection of MD 650 & Powder Mill Road will operate with an overall intersection delay of greater than 80 seconds during the PM peak hour (76.9 seconds and 125.0 seconds during the AM and PM peak hours respectively). As mentioned previously, the LATIP uses an 80 second threshold for the determination of intersection adequacy. Therefore, intersection improvements are required in order to meet the LATIP guidelines.
- The "Total with Improvements" scenario includes a portion of the Master Plan improvements (EB Left + WB Right at MD 650 & Powder Mill Road) and a slip ramp at the intersection of MD 650 & Elton Road to provide direct access from Elton Road to I-495 WB. Under this scenario, the signalized study intersection of MD 650 & Powder Mill Road will operate with an overall intersection delay of less than 80 seconds (46.0 seconds and 69.0 seconds during the AM and PM peak hours respectively) which satisfies the LATIP requirements. In addition, the intersection of MD 650 & Elton Road will operate with 10 seconds of delay or less during both the AM and PM peak hours.
- It should also be noted that the MD 650 Corridor will experience overall travel time improvements ranging from 14% to 66% depending on the direction of travel and peak hour. Furthermore, the total delay for all vehicles traveling in the area will be reduced by 38% in the AM peak hour and 14% in the PM peak hour with the proposed improvements.

Based on the results of this analysis, all signalized study intersections under the "Total with Improvements" scenario will operate with less than 80 seconds of delay and will satisfy LATIP requirements. If you have any questions regarding this matter, please do not hesitate to contact me at the number below. We look forward to your feedback and guidance in how you would like to proceed.

Thanks, Mike

EMAIL: mlenhart@lenharttraffic.com

Trip Generaton Rates

Apartment Units (ITE-220, Units)

Trip Distribution (In/Out)

Morning Trips = 0.51 x Units Evening Trips = 0.62 x Units 20/80 65/35

Daily Trips = 6.65 x Units

50/50

Senior Adult Housing - Attached (ITE-252, Units)

Trip Distribution (In/Out)

Morning Trips = 0.20 x Units Evening Trips = 0.25 x Units 34/66 54/46

Daily Trips = 3.44 x Units

50/50

Shopping Center (ksf, ITE-820)

Trip Distribution (In/Out)

Morning Trips = 0.96 x ksf Evening Trips = 3.71 x ksf 62/38 48/52

Daily Trips = 42.70 x ksf

50/50

Trip Generaton Totals

				AM Peak			Daily		
			ln	Out	Total	In	Out	Total	Total
Existing	Senior Adult Housing - Attached (ITE-252, Units)	96 units	6	13	19	13	11	24	330
Proposed	Senior Adult Housing - Attached (ITE-252, Units)	146 units	10	19	29	20	17	37	502
Proposed	Apartment Units (ITE-220, Units)	tment Units (ITE-220, Units) 350 units						217	2328
	Total New Residential Primary Trips	40	149	189	148	82	230	2500	
Proposed	Shopping Center (ksf, ITE-820)	24,500 SF	15	9	24	44	47	91	1046
	Shopping Center Pass-by (0% AM/34% PM)	0	0	0	-15	-16	-31	-356	
	Total New Retail Primary Trips	15	9	24	29	31	60	690	

Notes:

1. Trip Generation Rates obtained from the ITE Trip Generation Manual, 9th Edition

White Oak LATIP Analysis	Trip Generation for Hillandale Development	Exhibit
LENHART TRAFFIC CONSULTING, INC. 645 BALTIMORIC ANNAPOLIS BLVD, SUITC 214 SEVERNA PARK, MD 21146 www.lenhart(traffic.com	Timandale Development	5

Exhibit 6c

2040 Traffic Operations Summary

Intersection Operations

(Level of Service / Average Delay per Vehicle in Seconds)

Morning Peak Hour	No Build	With Improvements
1). MD 650 & Powder Mill Road Percent Improvement compared to No Build 2). MD 650 & Elton Road	E / 76.9 A / 4.8	D / 46.0 40% A / 10.0
Evening Peak Hour	No Build	With Improvements

Notes:

- 1. Results shown in the following format: Level of Service / Average Delay per Vehicle in Seconds
- 2. The Average Delay per Vehicle in Seconds is the average delay experienced by each and every vehicle passing through the intersection, i.e. an average delay of 60.0 seconds indicates that it takes every vehicle, on average, one minute to get through the intersection, regardless of which direction the vehicle is traveling.
- 3. All results are from Synchro/SimTraffic, a traffic analysis and microsimulation software package.

Corridor Measures of Effectiveness

Morning Peak Hour	No Build	With Improvements
MD 650 Travel Time (See Note 1, below) Northbound Percent Improvement compared to No Build Southbound Percent Improvement compared to No Build Total Network Delay (See Note 2, below)	151 secs. 504 secs. 593 hours	124 secs. 18% 170 secs. 66% 369 hours
Percent Improvement compared to No Build Evening Peak Hour	No Build	38% With Improvements
	2272	
MD 650 Travel Time (See Note 1, below) Northbound Percent Improvement compared to No Build Southbound Percent Improvement compared to No Build	634 secs. 583 secs.	546 secs. 14% 413 secs. 29%
Total Network Delay (See Note 2, below) Percent Improvement compared to No Build	600 hours	514 hours 14 %

Notes

- Average travel time in seconds from Capital Beltway to north of Powder Mill Road. This is a measure of how effectively traffic is moving along MD 650.
- Total Network Delay = Number of Vehicles x Average Delay per Vehicle within the traffic model, which
 extends along MD 650 from Oakview Drive to Chalmers Road. It is a measure of how the overall
 transportation system is performing in this area.
- 3. All results are from Synchro/SimTraffic, a traffic analysis and microsimulation software package.

White Oak LATIP Analysis

Results of Traffic

Operations Analyses

LENHART TRAFFIC CONSULTING, INC.
645 BALTIMORE ANNAPOLIS BLVD, SUITE 214
SEVERNA PARK, MD 21146
www.lenharttraffic.com

9

Appendix A

Supplemental Information Turning Movement Counts

Maryland Department of Transportation State Highway Administration Data Services Engineering Division Turning Movement Count Study - Field Sheet

Station ID:

S1999150073

County: Montgomery Comments: LOS AM: A(0.62) PM: B(0.63)

Date:

Tuesday 01/13/2015

Town: Weather:

none

Sunny

Location: MD 650 at ELTON RD Interval

(dd):

PEAK HOURS AM PERIOD 6:00AM-12:00PM PM PERIOD 12:00PM-19:00P 17:15 18:15 0.63 07:45 08:45 0.62 4436

Hour	_		MD 650		_	_		MD 650		_	_		Elton Rd From East		_		_		No Entranc		_	Grand
Begin	U.Tur		Through		TOTAL	U.Turn	Left	Throug	Right	TOTAL	U.Turn	Left	Throug	RIGHT	TOTAL	L	.Turn	Left	From West Through	Right	TOTAL	Total
6:00	0	1	340	0	341	0	0	207	11	218	0	6	0	2	8		0	0	0	0	0	567
6:15	0	1	367	0	368	0	0	304	15	319	0	15	0	2	17		0	0	0	0	0	704
6:30	0	14	488	0	502	0	0	341	38	379	0	15	0	4	19		0	0	0	0	0	900
6:45	0	4	492	0	496	0	0	425	23	448	0	31	0	4	35		0	0	0	0	0	979
7:00	0	2	540	0	542	0	0	475	30	505	0	24	0	8	32		0	0	0	0	0	1079
7:15	0	2	608	0	610	0	0	482	42	524	0	40	0	2	42		0	0	0	0	0	1176
7:30	0	10	573	0	583	2	0	530	34	564	0	32	0	7	39		0	0	0	0	0	1186
7:45	D	16	545	0	561	0	0	572	52	624	0	25	0	9	34		0	0	0	0	0	1219
8:00	0	9	520	0	529	0	0	500	35	535	0	19	0	4	23		0	0	0	0	0	1087
8:15	0	12	60e	0	618	0	0	486	30	516	0	25	0	5	30		0	0	0	0	0	1164
8:30	0	12	616	0	628	0	0	513	45	558	0	25	0	3	28		0	0	0	0	0	1214
8:45	0	4	532	0	536	0	0	507	41	548	0	14	0	6	20		0	0	0	0	0	1104
9:00	1	5	393	0	398	0	0	506	41	547	0	28	0	6	34		0	0	0	0	0	979
9:15	0	10	409	0	419	0	0	495	42	537	0	29	0	7	36		0	0	0	0	0	992
9:30	0	16	397	0	413	0	0	366	65	431	0	26	0	6	32		0	0	0	0	0	876
9:45	0	3	387	0	390	0	.0	305	70	375	0	28	0	15	43		0	0	0	0	0	808
10:00	0	2	384	0	386	0	0	336	74	410	0	27	0	9	36		0	0	0	0	0	832
10:15	0	2	382	0	384	0	0	286	78	364	0	33	0	10	43		0	0	0	0	0	791
10:30	0	2	293	0	295	0	0	302	62	364	0	52	0	17	69		0	0	0	0	0	728
10:45	0	1	338	0	339	0	0	279	58	337	0	25	0	14	39		0	0	0	0	0	715

Page 1 of 7

Station ID: S1999150073 County:

Montgomery

Comments: LOS AM: A(0.62) PM: B(0.63)

Date: Location: Tuesday 01/13/2015 MD 650 at ELTON RD Town:

none

Weather: Sunny

Interval

15 min

Interval	13 111
(dd):	
(aa):	

Volume LOS Volume LOS V/C Start End V/C PEAK HOURS Start End PM PERIOD 12:00PM-19:00P AM PERIOD 6:00AM-12:00PM 07:45 08:45 4684 0.62 17:15 18:15 4436 0.63

11:00	0 4 265 0 269 0 0 300 61 361	0 32 0 9 41	0 0 0 0 671
11:15	0 14 318 0 332 0 0 279 71 350	0 34 0 18 52	0 0 0 0 0 734
11:30	0 5 336 0 341 0 0 301 59 360	0 38 0 15 53	0 0 0 0 0 754
11:45	0 16 308 0 324 0 0 288 73 361	0 32 0 10 42	0 0 0 0 727
12:00	2 12 374 0 386 0 0 303 78 381	0 47 0 17 64	0 0 0 0 831
12:15	2 12 411 0 423 0 0 300 123 423	0 54 0 11 65	0 0 0 0 911
12:30	1 8 402 0 410 1 0 272 112 384	0 62 0 12 74	0 0 0 0 868
12:45	0 16 322 0 338 0 0 322 131 453	0 43 0 8 51	0 0 0 0 842
13:00	0 9 316 0 325 0 0 329 104 433	0 40 0 6 46	0 0 0 0 0 804
13:15	0 6 311 0 317 0 0 302 118 420	0 36 0 10 46	0 0 0 0 783
13:30	0 5 289 0 294 0 0 343 97 440	0 34 0 2 36	0 0 0 0 770
13:45	1 5 267 0 272 0 0 327 84 411	0 29 0 3 32	0 0 0 0 0 715
14:00	0 0 260 0 260 0 0 315 85 400	0 35 0 4 39	0 0 0 0 0 699
14:15	0 7 322 0 329 0 0 348 105 453	0 43 0 3 46	0 0 0 0 0 828
14:30	0 4 353 0 357 0 0 302 136 438	0 36 0 10 46	0 0 0 0 0 841
14:45	0 15 315 0 330 0 0 298 149 447	0 22 0 2 24	0 0 0 0 0 801
15:00	0 8 293 0 301 0 0 388 137 525	0 17 0 0 17	0 0 0 0 843
15:15	0 5 344 0 349 0 0 406 64 470	0 23 0 1 24	0 0 0 0 843
15:30	0 12 397 0 409 0 0 417 58 475	0 43 0 4 47	0 0 0 0 931
15:45	0 7 341 0 348 0 0 509 72 581	0 43 0 15 58	0 0 0 0 987
16:00	2 13 369 0 382 0 0 486 87 573	0 39 0 12 51	0 0 0 0 1006
16:15	0 8 445 0 453 0 0 492 66 558	0 70 0 0 70	0 0 0 0 0 1081
16:30	1 2 399 0 401 0 0 516 65 581	0 47 0 9 56	0 0 0 0 1038
16:45	0 4 344 0 348 0 0 495 65 560	0 57 0 5 62	0 0 0 0 970
17:00	0 4 440 0 444 0 0 515 91 606	0 62 0 15 77	0 0 0 0 1127
17:15	0 3 462 0 465 0 0 561 58 619	0 64 0 11 75	0 0 0 0 1159

Page 2 of 7

Station ID: \$1999150073

County:

Montgomery

Comments: LOS AM: A(0.62) PM: B(0.63)

Date: Location: Tuesday 01/13/2015

MD 650 at ELTON RD

Town: nor

Weather: Sunny

Interval (dd):

PEAK	AM PERIOD	Start	End	Volume	LOS	V/C	PM PERIOD	Start	End	Volume	LOS	V/C
HOURS	6:00AM-12:00PM	07:45	08:45	4684	A	0.62	12:00PM-19:00P	17:15	18:15	4436	В	0.63

17:30	0	0	346	0	346	0	0	510	91	601	0	43	0	15	58	0	0	0	0	0	1005
17:45	0	6	462	0	468	0	0	537	106	643	0	32	0	1	33	0	0	0	0	0	1144
18:00	0	3	493	0	496	0	0	481	72	553	0	64	0	15	79	0	0	0	0	0	1128
18:15	0	12	375	0	387	0	0	501	54	555	0	68	0	7	75	0	0	0	0	0	1017
18:30	0	11	328	0	339	0	0	472	56	528	0	32	0	4	36	0	0	0	0	0	903
18:45	0	5	257	0	262	0	0	459	31	490	0	18	0	0	18	0	0	0	0	0	770
TOTAL:	10	369	20474	0	20843	3	0	20891	3645	24536	0	1858	0	394	2252	0	0	0	0	0	47631
AM Peak:	0	49	2287	0	2336	0	0	2071	162	2233	0	94	0	21	115	0	0	0	0	0	4684
PM Peak:	0	12	1763	0	1775	0	0	2089	327	2416	0	203	0	42	245	0	0	0	0	0	4436

S1999150073 Station ID:

County: Town:

Montgomery

Comments: LOS AM: A(0.62) PM: B(0.63)

Date: Location: Tuesday 01/13/2015

MD 650 at ELTON RD

Weather: Sunny

Interv (dd):

al	15 min

PEAK	AM PERIOD	AM PERIOD PM PERIOD		Start	End	Volume	LOS	V/C				
HOURS	6:00AM-12:00PM	07:45	08:45	4684	Α	0.62	12:00PM-19:00P	17:15	18:15	4436	В	0.63

		MD 650 North Leg			MD 650 South Leg			Elton Rd East Leg		_	No Entrance West Leg	
Hour Ending	School Children	Pedestrians	Bicycles	School Children	Pedestrains	Bicycles	School Children	Pedestrians	Bicycles	Schoo Childre		Bicycles
6:00	0	0	0	0	0	0	0	2	0		0	0
6:15	0	0	0	0	1	0	0	0	0		0	0
6:30	0	0	0	0	1	0	0	0	0		0	0
6:45	0	0	0	0	0	0	0	3	0		0	0
7:00	0	0	0	0	0	0	0	0	0		0	0
7:15	0	0	0	0	1	0	0	1	0		0	0
7:30	0	0	0	0	0	0	0	1	0		0	0
7:45	0	0	0	0	0	0	0	1	0		0	0
8:00	0	0	0	0	0	0	0	0	0		0	0
8:15	0	0	0	0	0	0	0	2	0		0	0
8:30	0	0	0	0	0	0	0	0	0		0	0
8:45	0	0	0	0	1	0	0	2	0		0	0
9:00	0	0	0	0	0	0	0	0	0		0	0
9:15	0	0	0	0	0	0	0	2	0		0	0
9:30	0	0	0	0	1	0	0	2	0		0	0
9:45	0	0	0	0	0	0	0	0	0		0	0
10:00	0	0	0	0	0	0	0	2	0		0	0
10:15	0	0	0	0	0	0	0	2	0		0	0
10:30	0	0	0	0	0	0	0	0	0	(0	0
10:45	0	0	0	0	1	0	0	1	0			0
11:00	0	0	0	0	0	0	0		0	(0
11:15	0	0	0	0	0	0	0	3	0			0
11:30	0	0	0	0	0	0	0	0	0	(0
11:45	0	0	0	0	0	0	0		0	(0
12:00	0	0	0	0	0	0	0	2	0	(0
12:15	0	0	0	0	1	0	0	1	0	(4	0
12:30	0	0	0	0	0	0	0		0			0
12:45	0	0	0	0	0	0	0	2	0		0	0

Page 4 of 7

Station ID: S1999150073

County: Montgomery

none

Comments: LOS AM: A(0.62) PM: B(0.63)

Date: Location: Tuesday 01/13/2015 MD 650 at ELTON RD

Weather: Sunny

Interval	15 min
(44).	

		Weather	Summy	
	PEAK	AM PERIOD	Start	E
ı	HOURE	6:00AM-12:00PM	07:45	08:

Town:

Interval	15 min				,										
(dd):			PEAK	AM PERIOD	Start	End	Volume	LOS	V/C	PM PERIOD	Start	End	Volume		V/C
			HOURS	6:00AM-12:00PM	07:45	08:45	4684	A	0.62	12:00PM-19:00P	17:15	18:15	4436	В	0.63
13:00	0	0	0	0	0	0	1		0	0 0				0	0
13:15	0	0	0	0	0	0	ĺ		0	0 0			o F	0	0
13:30	0	0	0	0	0	0	Ī		0	0 0				0	0
13:45	0	0	0	0	0	0	Ī		0	0 0				0	0
14:00	0	0	0	0	0	0	ĺ		0	0 0			<u> </u>	0	0
14:15	0	0	0	0	1	0	ĺ		0	0 0				0	0
14:30	0	0	0	0	0	0	ĺ		0	0 0			1	0	0
14:45	0	0	0	0	1	0	ĺ		0	0 0				0	0
15:00	0	0	0	0	0	0	Ī		0	1 0				0	0
15:15	0	0	0	0	1	0	Ī		0	0 0			0	0	0
15:30	0	0	0	0	0	0	Ī		0	0 0			0	0	0
15:45	0	0	0	0	0	0	Ī		0	0 0			0	0	0
16:00	0	0	0	0	0	0]		0	0 0			0	0	0
16:15	0	0	0	0	1	0]		0	0 0			0	0	0
16:30	0	0	0	0	0	0]		0	0 0			0	0	0
16:45	0	0	0	0	0	0]		0	0 0			0	0	0
17:00	0	0	0	0	0	0]		0	0 0			0	0	0
17:15	0	0	0	0	0	0			0	0 0			0	0	0
17:30	0	0	0	0	-1	0]		0	0 0			0	0	0
17:45	0	0	0	0	0	0]		0	0 0			0	0	0
18:00	0	0	0	0	0	0			0	0 0	8		0	0	0
18:15	0	0	0	0	1	0			0	0 0			0	0	0
18:30	0	0	0	0	0	0			0	0 0			0	0	0
18:45	0	0	0	0	0	0			0	0 0			0	0	0
Total:	0	0	0	0	13	0			0	31 0			0	0	0
AM Peak:	0	0	0	0	0	0			0	3 0			0	0	0
PM Peak:	0	0	0	0	1	0			0	0 0			0	0	0

Page 5 of 7

Station ID: S1999150073

County:

Montgomery

Comments: LOS AM: A(0.62) PM: B(0.63)

Date: Location: Tuesday 01/13/2015

MD 650 at ELTON RD

Town: Weather:

none

Weather: Sunny

Interval (dd):

Page 6 of 7

S1999150073 Station ID:

Montgomery County:

Comments: LOS AM: A(0.62) PM: B(0.63)

Date: Location: Tuesday 01/13/2015

Town: none

MD 650 at ELTON RD

Weather: Sunny

Interval (dd):

PEAK	AM PERIOD	Start	End	Volume	LOS	V/C	PM PERIOD	Start	End	Volume	LOS	V/C
HOURS	6:00AM-12:00PM	07:45	08:45	4684	Α	0.62	12:00PM-19:00P	17:15	18:15	4436	В	0.63

Maryland Department of Transportation State Highway Administration Data Services Engineering Division Turning Movement Count Study - Field Sheet

Station ID:

S1998150181

County: Montgomery

none

Sunny

Comments: LOS AM: D(0.85) PM: D(0.85)

Date: Location: Thursday 01/22/2015 MD 650 at Powder Mill Rd Town:

Weather:

Interval (dd):

PEAK	AM PERIOD	Start	End	Volume	LOS	V/C	PM PERIOD	Start	End	Volume	LOS	V/C
HOURS	6:00AM-12:00PM	07:15	08:15	5003	D	0.85	12:00PM-19:00P	17:00	18:00	5155	D	0.85

Hour	_		MD 650			_		MD 650				_		wder Mill		_		_		wder Mill			Grand
Begin	U.Tur	Left	rom Nort	h Right	TOTAL	U.Turn	Left.	rom South Throug	Right	TOTAL		U.Turn	Left	From East Throug	RIGHT	TOTAL		U,Turn	Left	From Wes Through	t Right	TOTAL	Total
6:00	0	24	222	3	249	5	6	189	28	223		0	76	3	12	91		0	2	0	8	10	573
6:15	1	16	281	1	298	7	9	304	24	337	[0	108	6	23	137		0	5	0	8	13	785
6:30	0	12	432	3	447	13	5	316	27	348	[0	138	12	16	166		0	4	1	9	14	975
6:45	0	19	422	1	442	13	8	364	27	399		0	148	2	34	184		0	2	2	13	17	1042
7:00	2	19	466	2	487	6	11	346	41	398		0	191	4	44	239		0	2	0	11	13	1137
7:15	0	33	521	2	556	7	8	364	37	409	[0	207	6	26	239		0	4	4	10	18	1222
7:30	0	25	581	1	607	6	9	427	31	467	[0	222	5	26	253		0	3	0	13	16	1343
7:45	2	19	506	3	528	4	14	439	37	490	[0	180	3	26	209		0	4	3	8	15	1242
8:00	0	18	471	2	491	y	17	464	42	523	[0	124	3	32	159		0	5	1	17	23	1196
8:15	2	13	459	5	477	7	9	463	33	505		1	130	2	43	175		0	1	4	8	13	1170
8:30	0	25	429	0	454	7	8	467	31	506		0	143	5	34	182		0	8	3	12	23	1165
8:45	1	22	403	5	430	3	13	458	29	500		0	121	4	36	161	[0	2	0	9	11	1102
9:00	3	28	411	3	442	4	7	420	31	458		0	102	3	29	134		0	1	2	11	14	1048
9:15	1	19	385	4	408	8	10	331	41	382		0	111	0	32	143		0	2	3	10	15	948
9:30	0	25	343	1	369	10	9	307	35	351		0	97	5	25	127		0	6	3	16	25	872
9:45	3	33	309	5	347	5	8	285	28	321		0	69	6	28	103		0	8	0	21	29	800
10:00	0	26	319	1	346	0	11	271	33	315		1	86	1	20	107	[0	7	2	18	27	795
10:15	1	17	299	1	317	4	16	267	35	318		0	65	3	22	90	[0	10	1	19	30	755
10:30	1	18	263	3	284	9	12	216	28	256		0	73	2	21	96	[0	3	9	12	24	660
10:45	0	29	248	3	280	12	12	236	31	279		0	67	2	20	89		0	7	4	18	29	677

Page 1 of 7

Station ID: S1998150181

County: Montgomery

Comments: LOS AM: D(0.85) PM: D(0.85)

Date: Location: Thursday 01/22/2015

MD 650 at Powder Mill Rd

Town: Weather: Sunny

none

Interval 15 min

(dd):

PEAK	AM PERIOD	Start	End	Volume	LOS	V/C	PM PERIOD	Start	End	Volume	LOS	V/C
HOURS	6:00AM-12:00PM	07:15	08:15	5003	D	0.85	12:00PM-19:00P	17:00	18:00	5155	D	0.85

11:00	1 27 229 4	4 260	10 11 187	31 229	1 61 3	24 88	0 6 4 19 29 606
11:15	3 36 250	1 287	17 10 211	28 249	1 67 5	25 97	0 9 4 19 32 665
11:30	1 30 255	7 292	12 8 218	26 252	0 93 2	23 118	0 5 4 16 25 687
11:45	3 37 228	1 266	11 13 246	35 294	0 69 2	27 98	0 6 2 16 24 682
12:00	0 45 268 2	2 315	10 9 258	33 300	0 90 1	26 117	0 8 5 18 31 763
12:15	2 41 256	1 298	11 6 264	31 301	0 79 9	24 112	0 9 7 11 27 738
12:30	0 35 270 2	2 307	16 24 249	34 307	0 79 3	30 112	0 8 2 15 25 751
12:45	0 31 297 3	3 331	14 11 254	39 304	0 79 5	32 116	0 16 7 13 36 787
13:00	1 36 262	1 299	18 8 285	36 329	1 64 2	45 111	0 8 4 12 24 763
13:15	2 35 238 2	2 275	21 13 306	35 354	1 81 3	46 130	0 8 5 18 31 790
13:30	1 24 244	1 269	10 12 259	35 306	0 72 2	46 120	0 6 1 22 29 724
13:45	2 29 258 :	3 290	11 8 280	38 326	0 93 5	36 134	0 10 4 19 33 783
14:00	0 29 280	5 314	17 13 293	37 343	0 83 6	44 133	0 11 4 15 30 820
14:15	1 31 305	2 338	17 11 323	36 370	0 90 3	39 132	0 11 5 16 32 872
14:30	1 30 323	6 359	15 10 326	42 378	0 118 7	34 159	0 11 8 23 42 938
14:45	0 34 329 :	3 366	7 15 351	43 409	0 95 8	42 145	0 6 5 20 31 951
15:00	2 35 297	1 333	17 12 416	40 468	0 115 3	55 173	0 20 2 12 34 1008
15:15	2 43 399	0 442	12 11 401	59 471	1 113 1	61 175	0 7 6 18 31 1119
15:30	0 40 414	3 457	0 10 413	62 485	0 110 3	53 166	0 4 3 16 23 1131
15:45	5 35 449	4 488	13 9 456	65 530	0 131 2	46 179	0 7 5 18 30 1227
16:00	0 42 456	2 500	11 13 437	66 516	0 128 2	51 181	0 16 2 19 37 1234
16:15	0 49 462	2 513	8 8 479	57 544	0 124 1	63 188	0 4 6 10 20 1265
16:30	3 50 474	3 527	10 5 456	44 505	0 120 3	52 175	0 11 6 14 31 1238
16:45	0 41 485	1 527	15 10 477	57 544	0 111 6	58 175	0 4 6 20 30 1276
17:00	1 54 490	3 547	11 5 446	44 495	0 99 3	63 165	0 15 2 21 38 1245
17:15	2 56 515	4 575	11 9 493	64 566	0 122 5	60 187	0 8 4 15 27 1355
							10 CONTROL OF THE PROPERTY OF

Page 2 of 7

\$1998150181 Station ID:

County:

Montgomery

Comments: LOS AM: D(0.85) PM: D(0.85)

Date: Location: Thursday 01/22/2015

MD 650 at Powder Mill Rd

Town:

none

Weather: Sunny

Interval (dd):

PEAK	AM PERIOD	Start	End	Volume	LOS	V/C	PM PERIOD	Start	End	Volume	LOS	V/C
HOURS	6:00AM-12:00PM	07:15	08:15	5003	D	0.85	12:00PM-19:00P	17:00	18:00	5155	D	0.85

17:30	1.	49	486	1	536	20	1.1	457	49	517	0	109	7	62	178	0	8	6	21	35	1266
17:45	1	55	46B	2	525	11	10	491	62	563	0	92	10	75	177	0	7	4	13	24	1289
18:00	0	34	409	2	445	12	14	480	55	549	0	118	4	58	180	0	10	2	9	21	1195
18:15	1	39	385	1	425	13	10	449	53	512	0	111	1	40	152	0	15	4	4	23	1112
18:30	2	26	414	1	441	7	11	431	55	497	0	82	4	59	145	0	9	4	11	24	1107
18:45	1	32	317	1	350	6	7	388	36	431	0	73	0	52	125	0	11	1	12	24	930
TOTAL:	56	1650	18982	124	20756	533	539	18414	2076	21029	7	5529	198	2000	7727	0	380	176	756	1312	50824
AM Peak:	2	95	2079	8	2182	26	48	1694	147	1889	0	733	17	110	860	0	16	8	48	72	5003
PM Peak:	5	214	1959	10	2183	53	35	1887	219	2141	0	422	25	260	707	0	38	16	70	124	5155

S1998150181 Station ID:

County:

Comments: LOS AM: D(0.85) PM: D(0.85) Montgomery

Date: Location: Thursday 01/22/2015 MD 650 at Powder Mill Rd Town:

none

Weather: Sunny

Interval (dd):

15 min

PEAK	AM PERIOD	Start	End	Volume	LOS	V/C	PM PERIOD	Start	End	Volume	LOS	V/C
HOURS	6:00AM-12:00PM	07:15	08:15	5003	D	0.85	12:00PM-19:00P	17:00	18:00	5155	D	0.85

	_	MD 650			MD 650			Powder Mill Rd		Powder Mill Rd				
		North Leg			South Leg			East Leg			West Leg			
Hour Ending	School Children			School Children	Pedestrains	Bicycles	School Children	Pedestrians	Bicycles	School Children	Pedestrians	Bicycles		
6:00	0	0	0	0	4	0	0	0	0	0	0	0		
6:15	0	0	0	0	7	0	0	4	0	0	5	0		
6:30	0	1	0	0	5	0	0	2	0	0	1	0		
6:45	0	0	0	0	5	0	0	2	0	0	1	0		
7:00	0	1	0	0	10	0	0	4	0	0	4	0		
7:15	0	1	0	0	6	0	0	6	0	0	8	0		
7:30	0	1	0	0	7	0	0	3	0	0	5	0		
7:45	0	0	0	0	7	0	0	4	0	0	4	0		
8:00	0	0	0	0	1	0	0	0	0	0	1	0		
8:15	0	1	0	0	3	0	0	3	0	0	7	0		
8:30	0	0	0	0	3	0	0	0	0	0	1	0		
8:45	0	0	0	0	6	0	0	2	0	0	6	0		
9:00	0	1	0	0	12	0	0	6	0	0	5	0		
9:15	0	0	0	0	8	0	0	0	0	0	5	0		
9:30	0	2	0	0	6	0	0	0	0	0	3	0		
9:45	0	4	0	0	14	0	0	0	0	0	12	0		
10:00	0	2	0	0	6	0	0	0	0	0	9	0		
10:15	0	4	0	0	7	0	0	2	0	0	6	0		
10:30 10:45	0	1	0	0	3	0	0	3	0	0	13	0		
11:00	0	3	0	0	5	0	0	1	0	0	4	0		
11:15	0	2	0	0	7	0	0	0	0	0	7	0		
11:30	0	6	0	0		0	0	1	0	0	2	0		
11:45	0	1	0	0	6	0	0	0	0	0	1	0		
12:00	0	3	0		4	0	0	0	0	0	3	0		
12:15	0	0	0	0	3	0	0	0	0	0	1	0		
12:30	0	1	0	0	11	0	0	0	0	0	7	0		
12:45	0	1	0	0	9	0	0	0	0	0	5	0		
	0				3					U				

Page 4 of 7

Station ID: 51998150181

County: Montgomery Comments: LOS AM: D(0.85) PM: D(0.85)

Date: Location: Thursday 01/22/2015 MD 650 at Powder Mill Rd Town:

none

Weather: Sunny

Interval

15 min

(dd):			PEAK	AM PERIOD	Start	End	Volume	LOS	V/C	PM PERIOD	Start	End	Volume	LOS	V/C	
			HOURS	6:00AM-12:00PM	07:15	08:15	5003	D	0.85	12:00PM-19:00P	17:00	18:00	5155	D	0.85	
13:00	0	0	0	0	16		ח		0	6 0				8	0	
13:15	0	1	0	0	10		ī i		0	2 0			7	0	0	
13:30	0	0	0	0	12	(ភី		0	0 0		(2	0	
13:45	0	2	0	0	4		ī .		0	3 0		(i	4	0	
14:00	0	0	0	0	23	0	Ī .		0	11 0				6	0	
14:15	0	1	0	0	16	C	Ī.		0	4 0		C	7	4	0	
14:30	0	1	0	0	5	0	Ī		0	1 0		0		4	0	
14:45	0	1	0	0	11	C	Ī		0	3 0		0		1	0	
15:00	0	0	0	0	6	0	1		0	1 0		0		2	0	
15:15	0	1	0	0	5	0			0	1 0		0		8	0	
15:30	0	5	0	0	4	0]		0	1 0		0		3	0	
15:45	0	1	0	0	5	0			0	0 0		0		1	0	
16:00	0	0	0	0	7	0]		0	1 0		0		2	0	
16:15	0	1	0	0	12	0]		0	0 0		0		1	0	
16:30	0	0	0	0	8	0			0	4 0		0		8	0	
16:45	0	2	0	0	6	0]		0	4 0		0		3	0	
17:00	0	3	0	0	7	0			0	1 0		0		2	0	
17:15	0	3	0	0	6	0			0	8 0		0		1	0	
17:30	0	3	0	0	12	0			0	3 0		0		3	0	
17:45	0	2	0	0	8	0			0	1 0		0		2	0	
18:00	0	0	0	0	6	0			0	2 0		0		0	0	
18:15	0	0	0	0	8	0]		0	2 0		0		2	0	
18:30	0	0	0	0	4	0]		0	1 0		0		1	0	
18:45	0	0	0	0	3	0			0	0 0		0		1	0	
Total:	0	65	0	0	380	0			0	107 0		0	20	01	0	
AM Peak:	0	2	0	0	21	0	1		o	13 0		0		18	0	
PM Peak:	0	11			33	0	-		<u> </u>	13 0		0		8	0	
rm reak:	U	11	0	0	33	0	J		<u> </u>	13 0		0		<u> </u>	U	

Page 5 of 7

Station ID: S1998150181 County:

Montgomery

Comments: LOS AM: D(0.85) PM: D(0.85)

Date: Location:

Thursday 01/22/2015 MD 650 at Powder Mill Rd Town:

none

Weather: Sunny

Interval (dd):

PEAK	AM PERIOD 6:00AM-12:00PM	Start	End	Volume	LOS	V/C	PM PERIOD	Start	End	Volume	LOS	V/C
HOURS		07:15	08:15	5003	D	0.85	12:00PM-19:00P	17:00	18:00	5155	D	0.85

Page 6 of 7

Station ID: S1998150181

County:

Montgomery

Comments: LOS AM: D(0.85) PM: D(0.85)

Date:

Thursday 01/22/2015 MD 650 at Powder Mill Rd

Town:

Weather:

none

Location: Interval (dd):

15 min

Sunny

-	PEAK	AM PERIOD	Start	End	Volume	LOS	V/C	PM PERIOD	Start	End	Volume	LOS	V/C
	HOURS	6:00AM-12:00PM	07:15	08:15	5003	D	0.85	12:00PM-19:00P	17:00	18:00	5155	D	0.85

Appendix B

Synchro/SimTraffic Worksheets

	۶	→	*	1	+	4	4	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1	7"	ሻሻ	44		75	ተተ _ጉ		Y.	ተተጐ	
Traffic Volume (vph)	57	25	97	844	21	135	106	2155	170	112	2517	16
Future Volume (vph)	57	25	97	844	21	135	106	2155	170	112	2517	16
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1800	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	5.0	5.0		3.0	4.0		5.0	5.0	
Lane Util. Factor	1.00	1.00	1.00	0.91	0.91		1.00	0.91		1.00	0.91	
Frt	1.00	1.00	0.85	1.00	0.94		1.00	0.99		1.00	1.00	
FIt Protected	0.95	1.00	1.00	0.95	0.97		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1711	1801	1531	3113	1498		1711	4606		1711	4911	
FIt Permitted	0.95	1.00	1.00	0.95	0.97		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1711	1801	1531	3113	1498		1711	4606		1711	4911	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	59	26	100	870	22	139	109	2222	175	115	2595	16
RTOR Reduction (vph)	0	0	0	0	13	0	0	5	0	0	0	0
Lane Group Flow (vph)	59	26	100	696	322	0	109	2392	0	115	2611	0
Turn Type	Split	NA	Perm	Split	NA		Prot	NA		Prot	NA	
Protected Phases	3	3		4	4		1	5		6	2	
Permitted Phases			3		A STATE					100		
Actuated Green, G (s)	17.1	17.1	17.1	38.4	38.4		9.0	87.0		10.0	89.0	
Effective Green, g (s)	19.1	19.1	19.1	40.4	40.4		12.0	90.0		12.0	91.0	
Actuated g/C Ratio	0.11	0.11	0.11	0.22	0.22		0.07	0.50		0.07	0.51	
Clearance Time (s)	6.5	6.5	6.5	7.0	7.0		6.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	0.2		3.0	0.2	
Lane Grp Cap (vph)	181	191	162	698	336		114	2303		114	2482	
v/s Ratio Prot	0.03	0.01	102	c0.22	0.21		0.06	c0.52		0.07	c0.53	
v/s Ratio Perm	0.00	0.01	c0.07	00.22	0.2		44.4	00.02				
v/c Ratio	0.33	0.14	0.62	1.00	0.96		0.96	1.04		1.01	1.05	
Uniform Delay, d1	74.5	73.0	77.0	69.7	69.0		83.7	45.0		84.0	44.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.05	0.80		0.94	0.89	
Incremental Delay, d2	1.1	0.3	6.8	33.1	37.6		63.3	28.3		75.9	31.6	
Delay (s)	75.5	73.3	83.8	102.8	106.5		150.9	64.1		155.1	71.2	
Level of Service	E	E	F	F	F		F	E		F	E	
Approach Delay (s)		79.7			104.0			67.9			74.7	
Approach LOS		E			F			E			Е	
Intersection Summary			1 7 7 2 7									
HCM 2000 Control Delay			76.9	Н	CM 2000	Level of S	Service	Appropriate and the	Е			
HCM 2000 Volume to Capa	city ratio		1.00									
Actuated Cycle Length (s)			180.0	S	um of lost	time (s)			18.5			
Intersection Capacity Utiliza	tion		93.1%	IC	U Level o	f Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	1	*	†	-	1	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	AAA		ተተተ	7	ሻ	ተተተ		
Traffic Volume (vph)	100	23	2374	170	57	2633		
Future Volume (vph)	100	23	2374	170	57	2633		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	3.0		2.5	2.0	2.5	2.5		
Lane Util. Factor	0.97		0.91	1.00	1.00	0.91		
Frt	0.97		1.00	0.85	1.00	1.00		THE CONTRACTOR OF THE PARTY OF
Fit Protected	0.96		1.00	1.00	0.95	1.00		
Satd. Flow (prot)	3263		4916	1531	1711	4916		
FIt Permitted	0.96		1.00	1.00	0.05	1.00		
Satd. Flow (perm)	3263		4916	1531	83	4916		
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	106	24	2526	181	61	2801		
RTOR Reduction (vph)	6	0	0	0	0	0		
Lane Group Flow (vph)	124	0	2526	181	61	2801		
Turn Type	Prot		NA	pm+ov	Perm	NA		
Protected Phases	3		249	3	1 01111	649		
Permitted Phases	3			249	649			
Actuated Green, G (s)	13.2		154.3	167.5	154.3	154.3		
Effective Green, g (s)	16.2		158.3	170.5	158.3	158.3		
Actuated g/C Ratio	0.09		0.88	0.95	0.88	0.88		
Clearance Time (s)	6.0		0.00	6.0	0.00	0.00		
Vehicle Extension (s)	4.0			4.0				
Lane Grp Cap (vph)	293		4323	1467	72	4323		
v/s Ratio Prot	c0.04		0.51	0.01	12	0.57		
v/s Ratio Perm	00.04		0.51	0.01	c0.73	0.57		
v/c Ratio	0.42		0.58	0.11	0.85	0.65		
Uniform Delay, d1	77.5		2.7	0.12	5.1	3.0		
Progression Factor	1.00		1.33	1.00	1.04	0.61		
Incremental Delay, d2	1.3		0.2	0.0	24.2	0.01		
Delay (s)	78.8		3.8	0.3	29.5	2.0		
Level of Service	70.0 E		Α.	Α	23.5 C	Α Α		
Approach Delay (s)	78.8		3.5		C	2.5		
Approach LOS	70.0 E		3.5 A			Α		
Editor - Control of Co			А			Λ		
Intersection Summary								THE RESERVE
HCM 2000 Control Delay			4.8	Н	ICM 2000	Level of Servi	ice A	
HCM 2000 Volume to Capa	acity ratio		0.83	and heat from the contract				
Actuated Cycle Length (s)			180.0			t time (s)	11.5	
Intersection Capacity Utiliz	ation		61.1%	10	CU Level	of Service	В	
Analysis Period (min) c Critical Lane Group			15					

	۶	\rightarrow	*	1	←	*	1	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	77	4		ħ	ተተጉ		ሻ	ተተጐ	
Traffic Volume (vph)	71	32	109	496	36	300	194	2160	250	250	2456	43
Future Volume (vph)	71	32	109	496	36	300	194	2160	250	250	2456	43
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1800	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	5.0	5.0		3.0	4.0		5.0	5.0	
Lane Util. Factor	1.00	1.00	1.00	0.91	0.91		1.00	0.91		1.00	0.91	
Frt	1.00	1.00	0.85	1.00	0.88		1.00	0.98		1.00	1.00	
Flt Protected	0.95	1.00	1.00	0.95	0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1711	1801	1531	3113	1438		1711	4585		1711	4903	
FIt Permitted	0.95	1.00	1.00	0.95	0.99		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1711	1801	1531	3113	1438		1711	4585		1711	4903	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	73	33	112	511	37	309	200	2227	258	258	2532	44
RTOR Reduction (vph)	0	0	0	0	66	0	0	8	0	0	1	0
Lane Group Flow (vph)	73	33	112	460	331	0	200	2477	0	258	2575	0
Turn Type	Split	NA	Perm	Split	NA	U	Prot	NA	- U	Prot	NA	O O
Protected Phases	3	3	reiiii	Split 4	4		1	5		6	2	
	J Service Springs	J	3	4	4		ana Pagasa	υ		U		
Permitted Phases	10 E	10 E	18.5	37.0	37.0		9.0	76.0		21.0	89.0	
Actuated Green, G (s)	18.5 20.5	18.5	20.5	39.0	39.0		12.0	79.0		23.0	91.0	
Effective Green, g (s)		20.5										
Actuated g/C Ratio	0.11	0.11	0.11	0.22	0.22		0.07	0.44		0.13	0.51	
Clearance Time (s)	6.5	6.5	6.5	7.0	7.0		6.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	0.2		3.0	0.2	CARLON STAR
Lane Grp Cap (vph)	194	205	174	674	311		114	2012		218	2478	
v/s Ratio Prot	0.04	0.02		0.15	c0.23		c0.12	c0.54		c0.15	0.53	
v/s Ratio Perm			c0.07									
v/c Ratio	0.38	0.16	0.64	0.68	1.06		1.75	1.23		1.18	1.04	
Uniform Delay, d1	73.8	72.0	76.3	64.8	70.5		84.0	50.5		78.5	44.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.15	0.66		1.19	1.33	
Incremental Delay, d2	1.2	0.4	7.9	2.9	69.3		370.0	108.2		112.3	27.1	
Delay (s)	75.1	72.4	84.2	67.7	139.8		466.2	141.6		205.7	86.3	
Level of Service	E	Е	F	Е	F		F	F		F	F	
Approach Delay (s)		79.3			101.1			165.8			97.2	
Approach LOS		E			F			F			F	
Intersection Summary												
HCM 2000 Control Delay			125.0	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	city ratio		1.14									
Actuated Cycle Length (s)			180.0				18.5					
	ntersection Capacity Utilization		99.3%					F				
Analysis Period (min)			15									
c Critical Lane Group												

	1	*	†	-	-	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	AAA		ተተተ	77	ሻ	ተተተ	
Traffic Volume (vph)	215	53	2143	345	21	2018	
Future Volume (vph)	215	53	2143	345	21	2018	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	3.0		2.5	2.0	2.5	2.5	
Lane Util. Factor	0.97		0.91	1.00	1.00	0.91	
Frt	0.97		1.00	0.85	1.00	1.00	
Flt Protected	0.96		1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3259		4916	1531	1711	4916	
Flt Permitted	0.96		1.00	1.00	0.06	1.00	
Satd. Flow (perm)	3259		4916	1531	105	4916	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	
Adj. Flow (vph)	229	56	2280	367	22	2147	
RTOR Reduction (vph)	13	0	0	0	0	0	
Lane Group Flow (vph)	272	0	2280	367	22	2147	
Turn Type	Prot		NA	pm+ov	Perm	NA	
Protected Phases	3		249	3	. 0	649	
Permitted Phases	3			249	649		
Actuated Green, G (s)	22.3		145.2	167.5	145.2	145.2	
Effective Green, g (s)	25.3		149.2	170.5	149.2	149.2	
Actuated g/C Ratio	0.14		0.83	0.95	0.83	0.83	
Clearance Time (s)	6.0			6.0		NAME OF BUILDING	
Vehicle Extension (s)	4.0			4.0			
Lane Grp Cap (vph)	458		4074	1467	87	4074	e de la companya de
v/s Ratio Prot	c0.08		c0.46	0.04	• • • • • • • • • • • • • • • • • • • •	0.44	
v/s Ratio Perm	20.00			0.20	0.21		
v/c Ratio	0.59		0.56	0.25	0.25	0.53	
Uniform Delay, d1	72.5		4.9	0.3	3.3	4.7	
Progression Factor	1.00		0.56	1.00	1.89	2.02	
Incremental Delay, d2	2.4		0.1	0.1	0.8	0.1	
Delay (s)	75.0		2.9	0.4	7.1	9.5	
Level of Service	E		A	A	Α	A	
Approach Delay (s)	75.0		2.6			9.5	
Approach LOS	E		A			A	
Intersection Summary	resorto progress						
HCM 2000 Control Delay			9.6	L	CM 2000	Level of Service	Α
HCM 2000 Volume to Capa	acity ratio		0.58		2000	LOTOI OI OCIVIOC	А
Actuated Cycle Length (s)	doity ratio		180.0	0	um of los	t time (s)	11.5
Intersection Capacity Utiliz	ation		55.9%			of Service	11.3 B
Analysis Period (min)	adon		15	10	JO LEVE	OI OCIVICE	U

Arterial Level of Service: NB MD 650

		Delay	Travel	Dist	Arterial	
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed	
Oakview Dr	4	47.4	434.7	0.1	8	
Ramps 4&1	72	2.5	8.2	0.1	25	
	114	0.8	8.1	0.1	37	
	58	0.9	5.9	0.1	45	
Ramp 2	66	32.4	41.2	0.1	9	
Elton Rd	3	3.0	6.3	0.0	21	
Ramp 8	143	6.8	13.5	0.1	16	
The Configuration → But the present that the Configuration And as the configuration of the Configuration Configuration (Configuration Configuration Configu	2	12.1	15.6	0.0	6	
Powder Mill Rd	1	34.2	42.6	0.1	5	
	5	18.6	73.4	0.6	30	
Total		158.7	649.6	1.2	16	11170 45 4 2 1 4 1

Arterial Level of Service: SB MD 650

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Chalmers Rd	5	39.6	136.1	0.1	6	
Powder Mill Rd	e engan ayak ili dere biya di darah ili d 1	420.6	476.6	0.6	5	
	2	7.8	12.9	0.1	15	
Ramp 8	143	1.1	3.4	0.0	28	
Elton Rd	3	3.2	8.5	0.1	25	
Ramp 2	66	0.6	2.6	0.0	51	
	58	2.4	13.0	0.1	29	
	114	1.0	7.0	0.1	38	
Ramps 4&1	72	2.7	9.6	0.1	31	
Oakview Dr	4	11.1	17.0	0.1	12	3 (MACCO) (1 (MACCO) (
Total		490.0	686.7	1.2	7	

Arterial Level of Service: NB MD 650

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Oakview Dr	4	63.9	2063.5	0.1	6	
Ramps 4&1	72	2.9	8.6	0.1	23	
	114	0.8	8.1	0.1	37	
	58	0.8	5.8	0.1	45	
Ramp 2	66	40.2	49.0	0.1	8	
Elton Rd	3	3.8	7.2	0.0	18	
Ramp 8	143	10.9	17.6	0.1	12	
	2	12.9	16.6	0.0	6	
Powder Mill Rd	1	22.4	528.1	0.1	7	
	5	8.7	64.2	0.6	34	
Total		167.6	2768.8	1.2	16	

Arterial Level of Service: SB MD 650

		Delay	Travel	Dist	Arterial	
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed	
Chalmers Rd	5	54.2	338.8	0.1	5	
Powder Mill Rd	1	464.3	548.9	0.6	4	
	2	8.6	13.7	0.1	14	
Ramp 8	143	1.1	3.4	0.0	27	
Elton Rd	3	8.4	13.7	0.1	15	
Ramp 2	66	1.1	3.1	0.0	42	
	58	2.2	12.9	0.1	29	
	114	0.9	6.8	0.1	39	
Ramps 4&1	72	2.1	9.0	0.1	33	
Oakview Dr	4	11.7	17.7	0.1	11	
Total		554.6	968.1	1.2	7	

Total Network Performance By Run

Run Number	1	2	3	4	5	Avg	
Denied Delay (hr)	674.9	630.3	565.4	568.8	551.5	598.2	
Denied Del/Veh (s)	224.7	210.3	188.6	189.7	184.8	199.6	
Total Delay (hr)	635.4	597.8	550.6	593.7	589.0	593.3	
Total Del/Veh (s)	220.2	211.0	193.9	207.9	207.5	208.1	

Total Network Performance By Run

Run Number	1	2	3	4	5	Avg	
Denied Delay (hr)	1635.0	1568.1	1511.3	1615.7	1504.2	1566.9	
Denied Del/Veh (s)	471.3	457.1	434.5	465.3	430.3	451.6	
Total Delay (hr)	626.0	605.6	580.8	591.0	595.7	599.8	
Total Del/Veh (s)	222.5	217.6	206.2	211.3	207.8	213.1	

	*	-	*	1	←		4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	414	77	77	4	7	7	ተተ _ጉ		ሻ	ተተጉ	
Traffic Volume (vph)	57	25	97	722	21	135	80	2155	170	112	2517	16
Future Volume (vph)	57	25	97	722	21	135	80	2155	170	112	2517	16
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1800	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	5.0	5.0	5.0	3.0	4.0		5.0	5.0	
Lane Util. Factor	0.91	0.86	0.91	0.91	0.91	1.00	1.00	0.91		1.00	0.91	
Frt	1.00	0.91	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	
Flt Protected	0.95	0.99	1.00	0.95	0.96	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1557	2814	1393	3113	1567	1531	1711	4606		1711	4911	
Flt Permitted	0.95	0.99	1.00	0.95	0.96	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1557	2814	1393	3113	1567	1531	1711	4606		1711	4911	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	59	26	100	744	22	139	82	2222	175	115	2595	16
RTOR Reduction (vph)	0	0	0	0	0	117	0	3	0	0	0	0
Lane Group Flow (vph)	47	88	50	513	253	22	82	2394	0	115	2611	0
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	3	3		4	4		1	5		6	2	
Permitted Phases			3			4						
Actuated Green, G (s)	12.0	12.0	12.0	27.0	27.0	27.0	3.0	95.9		17.6	111.5	
Effective Green, g (s)	14.0	14.0	14.0	29.0	29.0	29.0	6.0	98.9		19.6	113.5	
Actuated g/C Ratio	0.08	0.08	0.08	0.16	0.16	0.16	0.03	0.55		0.11	0.63	
Clearance Time (s)	6.5	6.5	6.5	7.0	7.0	7.0	6.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.2		3.0	0.2	
Lane Grp Cap (vph)	121	218	108	501	252	246	57	2530		186	3096	
v/s Ratio Prot	0.03	0.03		c0.16	0.16		c0.05	c0.52		0.07	c0.53	
v/s Ratio Perm			c0.04			0.01						
v/c Ratio	0.39	0.40	0.46	1.02	1.00	0.09	1.44	0.95		0.62	0.84	
Uniform Delay, d1	78.9	79.0	79.4	75.5	75.5	64.3	87.0	38.1		76.6	26.2	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.81	0.54		0.93	0.87	
Incremental Delay, d2	2.1	1.2	3.1	46.4	57.7	0.2	260.4	7.7		4.6	2.3	
Delay (s)	81.0	80.2	82.5	121.9	133.2	64.4	330.9	28.4		75.6	25.2	
Level of Service	F	F	F	F	F	Е	F	С		Е	С	
Approach Delay (s)		81.1			116.3			38.4			27.3	
Approach LOS		F			F			D			С	
Intersection Summary												
HCM 2000 Control Delay			46.0	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.93									
Actuated Cycle Length (s)			180.0	S	um of lost	time (s)			18.5			
Intersection Capacity Utiliza	tion		86.2%	IC	CU Level o	of Service			Е			
Analysis Period (min)			15									
0.110												

c Critical Lane Group

	•	→	*	•	←	*	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	44			ተተተ	7	7	ተተተ	
Traffic Volume (vph)	0	0	0	100	148	10	0	2374	170	57	2633	0
Future Volume (vph)	0	0	0	100	148	10	0	2374	170	57	2633	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				3.0	6.0			2.5	2.0	2.5	2.5	
Lane Util. Factor				0.95	0.95			0.91	1.00	1.00	0.91	
Frt				1.00	0.99			1.00	0.85	1.00	1.00	
Flt Protected				0.95	1.00			1.00	1.00	0.95	1.00	
Satd. Flow (prot)				1625	1689			4916	1531	1711	4916	
Flt Permitted				0.95	1.00			1.00	1.00	0.04	1.00	
Satd. Flow (perm)				1625	1689			4916	1531	75	4916	
Peak-hour factor, PHF	1.00	1.00	1.00	0.94	1.00	0.94	1.00	0.94	0.94	0.94	0.94	1.00
Adj. Flow (vph)	0	0	0	106	148	11	0	2526	181	61	2801	0
RTOR Reduction (vph)	0	0	0	0	2	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	95	168	0	0	2526	181	61	2801	0
Turn Type				custom	NA			NA	pm+ov	Perm	NA	
Protected Phases				3	3			249	3		649	
Permitted Phases				3					249	649		
Actuated Green, G (s)				23.6	23.6			143.9	167.5	143.9	143.9	
Effective Green, g (s)				26.6	23.6			147.9	170.5	147.9	147.9	
Actuated g/C Ratio				0.15	0.13			0.82	0.95	0.82	0.82	
Clearance Time (s)				6.0	6.0				6.0			
Vehicle Extension (s)				4.0	4.0				4.0			
Lane Grp Cap (vph)				240	221			4039	1467	61	4039	
v/s Ratio Prot				0.06	c0.10			0.51	0.02		0.57	
v/s Ratio Perm									0.10	c0.81		
v/c Ratio				0.40	0.76			0.63	0.12	1.00	0.69	
Uniform Delay, d1				69.4	75.5			5.9	0.3	16.0	6.7	
Progression Factor				1.00	1.00			1.12	1.00	0.91	0.62	
Incremental Delay, d2				1.5	15.1			0.3	0.0	86.7	0.3	
Delay (s)				70.9	90.6			6.9	0.3	101.3	4.4	
Level of Service				Е	F			Α	Α	F	Α	
Approach Delay (s)		0.0			83.5			6.4			6.5	
Approach LOS		Α			F			A			Α	
Intersection Summary												
HCM 2000 Control Delay			10.0	H	ICM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.99									
Actuated Cycle Length (s)			180.0		sum of los				13.5			
Intersection Capacity Utiliza	ation		67.1%	10	CU Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	1	\rightarrow	7	1	—	4	4	†	-	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	414	7	1,4	स	7"	7	ተተጉ		ሻ	ተተጐ	
Traffic Volume (vph)	71	32	109	424	36	300	141	2160	250	250	2456	43
Future Volume (vph)	71	32	109	424	36	300	141	2160	250	250	2456	43
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1800	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	5.0	5.0	5.0	3.0	4.0		5.0	5.0	
Lane Util. Factor	0.91	0.86	0.91	0.91	0.91	1.00	1.00	0.91		1.00	0.91	
Frt	1.00	0.92	0.85	1.00	1.00	0.85	1.00	0.98		1.00	1.00	
Flt Protected	0.95	0.99	1.00	0.95	0.96	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1557	2830	1393	3113	1578	1531	1711	4585		1711	4903	
FIt Permitted	0.95	0.99	1.00	0.95	0.96	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1557	2830	1393	3113	1578	1531	1711	4585		1711	4903	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	73	33	112	437	37	309	145	2227	258	258	2532	44
RTOR Reduction (vph)	0	0	0	0	0	265	0	7	0	0	1	0
Lane Group Flow (vph)	55	107	56	315	159	44	145	2478	0	258	2575	0
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	3	3		4	4		1	5		6	2	
Permitted Phases			3			4						
Actuated Green, G (s)	13.0	13.0	13.0	23.4	23.4	23.4	6.0	83.7		32.4	111.1	
Effective Green, g (s)	15.0	15.0	15.0	25.4	25.4	25.4	9.0	86.7		34.4	113.1	
Actuated g/C Ratio	0.08	0.08	0.08	0.14	0.14	0.14	0.05	0.48		0.19	0.63	
Clearance Time (s)	6.5	6.5	6.5	7.0	7.0	7.0	6.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.2		3.0	0.2	
Lane Grp Cap (vph)	129	235	116	439	222	216	85	2208		326	3080	
v/s Ratio Prot	0.04	0.04		c0.10	0.10	0	c0.08	c0.54		0.15	c0.53	
v/s Ratio Perm			c0.04			0.03						
v/c Ratio	0.43	0.46	0.48	0.72	0.72	0.20	1.71	1.12		0.79	0.84	
Uniform Delay, d1	78.4	78.6	78.8	73.9	73.9	68.3	85.5	46.6		69.4	26.2	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.79	0.60		0.95	0.89	
Incremental Delay, d2	2.3	1.4	3.1	5.5	10.5	0.5	358.2	61.1		9.6	2.2	
Delay (s)	80.7	80.0	81.9	79.4	84.3	68.8	425.7	89.3		75.3	25.5	
Level of Service	F	F	F	E	F	E	F	F		E	C	
Approach Delay (s)	FIRE REPORT STATE	80.7		CYACLES - CO	76.2		COMPANIE NO	107.8			30.0	
Approach LOS		F			E			F			C	
The state of the s		MONACHE STUDIOS										
Intersection Summary			00.0	1.16	214 0000	1 1 6	0					
HCM 2000 Control Delay			69.0	H	JM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	city ratio		0.97						40.5			
Actuated Cycle Length (s)			180.0		ım of lost				18.5			
Intersection Capacity Utiliza	tion		90.6%	IC	U Level o	of Service)		E			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	*	1	←	*	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				75	4			ተተተ	77	7	ተተተ	
Traffic Volume (vph)	0	0	0	215	125	26	0	2143	345	21	2018	0
Future Volume (vph)	0	0	0	215	125	26	0	2143	345	21	2018	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				3.0	6.0			2.5	2.0	2.5	2.5	
Lane Util. Factor				0.95	0.95			0.91	1.00	1.00	0.91	
Frt				1.00	0.98			1.00	0.85	1.00	1.00	
Flt Protected				0.95	0.99			1.00	1.00	0.95	1.00	
Satd. Flow (prot)				1625	1656			4916	1531	1711	4916	
Flt Permitted				0.95	0.99			1.00	1.00	0.06	1.00	
Satd. Flow (perm)				1625	1656			4916	1531	99	4916	
Peak-hour factor, PHF	1.00	1.00	1.00	0.94	1.00	0.94	1.00	0.94	0.94	0.94	0.94	1.00
Adj. Flow (vph)	0	0	0	229	125	28	0	2280	367	22	2147	0
RTOR Reduction (vph)	0	0	0	0	3	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	190	189	0	0	2280	367	22	2147	0
Turn Type				custom	NA			NA	pm+ov	Perm	NA	
Protected Phases				3	3			249	3	1 01111	649	
Permitted Phases				3				2 10	249	649		
Actuated Green, G (s)				28.8	28.8			138.7	167.5	138.7	138.7	
Effective Green, g (s)				31.8	28.8			142.7	170.5	142.7	142.7	
Actuated g/C Ratio				0.18	0.16			0.79	0.95	0.79	0.79	
Clearance Time (s)				6.0	6.0				6.0			
Vehicle Extension (s)				4.0	4.0				4.0			
Lane Grp Cap (vph)				287	264			3897	1467	78	3897	
v/s Ratio Prot				c0.12	0.11			c0.46	0.05		0.44	
v/s Ratio Perm								20110	0.19	0.22		
v/c Ratio				0.66	0.71			0.59	0.25	0.28	0.55	
Uniform Delay, d1				69.1	71.7			7.2	0.3	5.0	6.9	
Progression Factor				1.00	1.00			0.56	1.00	0.39	0.49	
Incremental Delay, d2				6.2	9.4			0.2	0.1	1.8	0.1	
Delay (s)				75.3	81.1			4.3	0.4	3.8	3.5	
Level of Service				E	F			Α	A	A	A	
Approach Delay (s)		0.0			78.2			3.7			3.5	
Approach LOS		A			E			A			A	
Intersection Summary		State State										
HCM 2000 Control Delay			9.1	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacit	v ratio		0.63									
Actuated Cycle Length (s)			180.0	S	um of los	t time (s)			13.5			
Intersection Capacity Utilization	on		59.8%			of Service			В			
Analysis Period (min)			15		20 20401	. COI 1100			J			
c Critical Lane Group			10									

Arterial Level of Service: NB MD 650

		Delay	Travel	Dist	Arterial	
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed	
Oakview Dr	6	48.4	468.7	0.1	8	
Ramps 4&1	72	2.5	8.2	0.1	25	
	114	0.8	8.1	0.1	37	
	58	0.6	5.7	0.1	47	
Ramp 2	66	18.4	27.1	0.1	14	A CHARLES AND TO
Elton Rd	3	2.9	6.4	0.0	21	
Ramp 8	143	5.4	12.7	0.1	17	
	2	5.9	9.1	0.0	11	
Powder Mill Rd	1	21.5	30.1	0.1	7	
	5	9.6	65.8	0.6	34	
Total		116.0	641.9	1.2	19	(175. PA) 经未产品的

Arterial Level of Service: SB MD 650

		Delay	Travel	Dist	Arterial	
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed	
Chalmers Rd	5	5.2	12.7	0.1	24	
Powder Mill Rd	1	87.0	140.1	0.6	16	
	2	7.4	12.3	0.1	15	
Ramp 8	143	1.5	4.0	0.0	25	
	3	5.2	9.9	0.1	21	
Ramp 2	66	0.9	3.5	0.0	38	
	58	3.3	13.9	0.1	27	
	114	1.5	7.4	0.1	36	
Ramps 4&1	72	4.3	11.3	0.1	26	
Oakview Dr	6	12.9	18.8	0.1	11	
Total		129.1	234.0	1.2	18	

Arterial Level of Service: NB MD 650

		Delay	Travel	Dist	Arterial	
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed	
Oakview Dr	7	64.1	2138.7	0.1	6	
Ramps 4&1	72	2.8	8.5	0.1	24	
	114	0.8	8.1	0.1	37	
	58	0.6	5.6	0.1	47	
Ramp 2	66	25.7	34.4	0.1	11	
Elton Rd	3	2.9	6.4	0.0	20	
Ramp 8	143	9.8	17.2	0.1	12	
	2	9.3	12.1	0.0	8	
Powder Mill Rd	1	22.1	447.3	0.1	7	
	5	7.6	63.3	0.6	35	
Total		145.7	2741.6	1.2	17	

Arterial Level of Service: SB MD 650

		Delay	Travel	Dist	Arterial	
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed	
Chalmers Rd	5	18.6	42.0	0.1	12	
Powder Mill Rd	1	316.6	385.1	0.6	6	
	2	7.4	12.5	0.1	16	
Ramp 8	143	0.9	3.3	0.0	28	
	3	4.1	8.8	0.1	24	
Ramp 2	66	0.8	3.4	0.0	39	
	58	1.7	12.3	0.1	31	
	114	0.8	6.8	0.1	39	
Ramps 4&1	72	2.1	9.0	0.1	33	
Oakview Dr	7	11.2	17.1	0.1	12	
Total		364.2	500.3	1.2	9	

Total Network Performance By Run

Run Number	1	2	3	4	5	Avg	
Denied Delay (hr)	775.8	674.7	661.9	736.5	623.0	694.4	
Denied Del/Veh (s)	253.7	224.7	219.5	242.7	208.9	230.0	
Total Delay (hr)	336.5	355.3	398.5	351.7	405.1	369.4	
Total Del/Veh (s)	119.0	125.6	139.7	125.3	146.0	131.1	

Total Network Performance By Run

Run Number	1	2	3	4	5	Avg	
Denied Delay (hr)	1334.4	1475.7	1359.4	1423.4	1312.9	1381.2	
Denied Del/Veh (s)	388.1	426.7	392.5	416.7	378.1	400.4	
Total Delay (hr)	561.3	544.0	501.4	422.3	542.3	514.3	
Total Del/Veh (s)	192.9	187.6	172.9	147.9	185.2	177.4	

Appendix C

Concept Improvement Plans

LATIP EXHIBIT (ELTON ROAD) DRAFT

10/22/18 | AL_I | EXC

LATIP EXHIBIT (SLIP LANE) DRAFT

10/25/10 [AL] [E

LATIP EXHIBIT (POWDER MILL ROAD)

DRAFT

Lenhart Traffic Consulting, Inc.

Transportation Planning & Traffic Engineering

Memorandum:

Date:

November 21, 2018

TO: Mr. Chris Conklin

Montgomery County DOT 101 Monroe Street, #10 Rockville, MD 20850 FROM: Mike Lenhart

RE:

White Oak LATIP Supplemental Analysis - Cut-through Traffic

This memorandum is being completed in response to concerns raised about cut-through traffic as a result of the proposed slip-ramp from Elton Road to I-495 westbound. Based on the content of the testimony at the November 15, 2018 Public Hearing for this project, as well as on available traffic volume data, it appears that the primary concern associated with cut-through traffic is more about safety (with vehicles unsafely traveling at high speeds through the residential neighborhood) than about the actual volume of vehicles cutting-through the neighborhood.

To the extent the cut-through issue is related to safety and speeds, the recent series of speed humps installed by Prince George's County along Wooded Way and Elton Road, coupled with the proposed traffic calming to be installed with the slip ramp on the Montgomery County side of Elton Road should substantially decrease speeds and enhance safety. The proposed traffic calming to be installed along Elton Road in conjunction with the slip ramp includes a speed hump as well as several measures designed to narrow the roadway width and effectively reduce speeds. We believe these measures will substantially enhance safety along Elton Road (and Wooded Way) and effectively address the vast majority of safety related cut-through issues noted to date. Importantly, these measures will address vehicles traveling east or west whether they are associated with the ramp or not (i.e existing issues).

While we believe the above measures will be highly effective in providing relief related to unsafe cut-through traffic along Elton Road, should the County decide that additional measures are necessary to address the volume component of the cut-through traffic issue, the most effective options for reducing this traffic would involve implementing turn restrictions from MD 212 onto Wooded Way or converting Wooded Way to one-way. These improvements would be cost-effective and would directly address the source of the cut-through traffic.

However, given that these improvements require action from Prince George's County, which is beyond Montgomery County's control, if Montgomery County wishes to take direct action to mitigate cut-through traffic it is our recommendation that westbound traffic be prohibited along Elton Road immediately east of Avenel Garden Lane (between the predominantly commercial land uses to the west and residential neighborhood to the east). Prohibiting westbound traffic from passing this location would completely negate the potential for any neighborhood cut-through traffic associated with the ramp. Should MCDOT find it necessary, this solution would maintain the majority of the benefits of the proposed slip ramp by providing access to I-495W for travelers from the office, industrial, and shopping center uses along Elton

LENHART TRAFFIC CONSULTING, INC.

645 BALTIMORE ANNAPOLIS BLVD, SUITE 214
SEVERNA PARK, MD 21146
www.lenharttraffic.com

OFFICE: (410) 216-3333

FAX: (443) 782-2288

EMAIL: mlenhart@lenharttraffic.com

Lenhart Traffic Consulting, Inc.

Transportation Planning & Traffic Engineering

Road without requiring that they traverse the problematic and congested MD 650 & Powder Mill Road intersection which we are trying to improve (as explained in detail in the REVISED White Oak LATIP Supplemental Analysis dated November 12, 2018).

In order to understand the effects of restricting westbound traffic along Elton Road, an analysis was conducted comparing the results shown in the November 12, 2018 REVISED White Oak LATIP Supplemental Analysis (the 'November 12 memo') to results if westbound traffic were to be restricted. The analysis was completed as follows:

Three scenarios were evaluated. The first two scenarios were taken directly from the November 12 memo, while the third scenario is a new scenario showing the impacts of vehicles being diverted to the MD 650 & Powder Mill Road intersection if the westbound restriction along Elton Lane were to be implemented. The scenarios are as follows:

- Total Conditions with no improvements (No Build) to intersection geometry and timings.
- Total Conditions with the following improvements:
 - 1. An additional EB left-turn lane (including modifications to existing lane use) and WB right-turn lane at the intersection of MD 650 & Powder Mill Road. Note that a dedicated WB right-turn lane at the intersection of MD 650 & Powder Mill Road is present under Existing Conditions, however, the westbound right turn lane is only 50' long. This is far shorter than a typical turn lane and is completely unusable because access to the right turn lane is blocked by queues in the adjacent lanes. Therefore, this 50' lane was not treated as a right turn lane in the analysis of existing geometrics.
 - 2. A slip ramp at the intersection of MD 650 & Elton Road to provide direct access from Elton Road to I-495 WB.
 - 3. Traffic calming along Elton Road in order to reduce speeds and enhance safety.
- Total Conditions with the above improvements and the westbound restriction on Elton Road.

The following intersections were analyzed as part of this analysis including:

- 1. MD 650 & Powder Mill Road
- 2. MD 650 & Elton Road

In addition to this memo, the following exhibits and appendices have been included:

Exhibit 1	Presents a location map, shows the study intersections, and notes where the proposed westbound restriction would be implemented along Elton Road.
Exhibit 2	Shows the Total Peak Hour Volumes with the Slip Ramp. This exhibit is the same as Exhibit 8c in the November 12 memo.
Exhibit 3	Displays the diversions that would result if westbound traffic is restricted along Elton Road.
Exhibit 4	Includes the Total Peak Hour Volumes resulting from implementation of the slip ramp and the westbound restriction along Elton Road.

OFFICE: (410) 216-3333

EMAIL: mlenhart@lenharttraffic.com

FAX: (443) 782-2288

Lenhart Traffic Consulting, Inc.

Transportation Planning & Traffic Engineering

Exhibit 5

Provides a table showing Level of Service using the HCS methodology at the two study intersections for each of the three scenarios. The LATIP uses an 80 second threshold for the determination of intersection adequacy.

The following information is a summary of the results of our analyses:

- The improvements proposed as part of this project (without the westbound restriction along Elton Road) are projected to enhance operations at the intersection of MD 650 & Powder Mill by 40% during the AM peak hour and 43% during the PM peak hour compared to the No Build scenario.
- The implementation of a westbound restriction along Elton Road (and associated diverted traffic to the MD 650 & Powder Mill intersection) is slightly less beneficial to the intersection of MD 650 & Powder Mill Road than if no restriction were in place, however even so there is still a 28% benefit during the AM peak hour and 37% benefit during the PM peak hour compared to the No Build.
- ➤ All intersections will continue to operate within the 80 second LATIP delay threshold under the scenario where the improvements are implemented and a westbound restriction is implemented along Elton Road in order to reduce cut-through traffic.

We welcome the opportunity to discuss our analysis and assumptions however, based on the results of this analysis, all signalized study intersections under the "Total with Improvements and Westbound Restriction on Elton Road" scenario will operate with less than 80 seconds of delay and will satisfy LATIP requirements. If you have any questions regarding this matter, please do not hesitate to contact me at the number below. We look forward to your feedback and guidance in how you would like to proceed.

Thanks, Mike

OFFICE: (410) 216-3333

FAX: (443) 782-2288

EMAIL: mlenhart@lenharttraffic.com

White Oak LATIP Analysis

LENHART TRAFFIC CONSULTING, INC. 645 BALTIMORE ANNAPOLIS BLVD, SUITE 214 SEVERNA PARK, MD 21146 www.lenharttraffic.com

Total Peak Hour Volumes with Slip Ramp

xx = AM Peak Vol's (xx) = PM Peak Vol's

White Oak LATIP Analysis

LENHART TRAFFIC CONSULTING, INC.
645 BALTIMORE ANNAPOLIS BLVD, SUITE 214
SEVERNA PARK, MD 21146
www.lenharttraffic.com

Diversions as a Result of Westbound Restriction

Key: xx = AM Peak Vol's (xx) = PM Peak Vol's

White Oak LATIP Analysis

LENHART TRAFFIC CONSULTING, INC. 645 BALTIMORE ANNAPOLIS BLVD, SUITE 214 SEVERNA PARK, MD 21146 www.lenharttraffic.com

Total Peak Hour Volumes with Slip Ramp & WB Restriction

Key: xx = AM Peak Vol's (xx) = PM Peak Vol's

2040 Traffic Operations Results

(Level of Service / Average Delay per Vehicle in Seconds)

Morning Peak Hour	No Build	With Improvements	With Improvements and WB Restriction on Elton Road
1). MD 650 & Powder Mill Road Percent Improvement compared to No Build 2). MD 650 & Elton Road	E / 76.9 	D / 46.0 40%	E / 55.2 28% A / 5.8
Evening Peak Hour	No Build	With Improvements	With Improvements and WB Restriction on Elton Road
1). MD 650 & Powder Mill Road Percent Improvement compared to No Build 2). MD 650 & Elton Road	F / 125.0 A / 9.6	E / 71.2 43% A / 9.4	E / 78.4 37% A / 5.4

Notes:

- Results shown in the following format: Level of Service / Average Delay per Vehicle in Seconds
- 2. The Average Delay per Vehicle in Seconds is the average delay experienced by each and every vehicle passing through the intersection, i.e. an average delay of 60.0 seconds indicates that it takes every vehicle, on average, one minute to get through the intersection, regardless of which direction the vehicle is traveling.
- All results are from Synchro/SimTraffic, a traffic analysis and microsimulation software package.

White Oak LATIP Analysis

LENHART TRAFFIC CONSULTING, INC. 645 BALTIMORE ANNAPOLIS BLVD, SUITE 214 SEVERNA PARK, MD 21146

www.lenharttraffic.com

Results of HCS Level-of-Service Analyses

	1	→	*	1	←	*	4	†	1	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ř	414	74	14.64	4	7"	ሻ	ተተ _ጉ		7	ተተጐ	
Traffic Volume (vph)	57	25	97	848	21	145	80	2145	170	112	2517	16
Future Volume (vph)	57	25	97	848	21	145	80	2145	170	112	2517	16
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1800	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	5.0	5.0	5.0	3.0	4.0		5.0	5.0	
Lane Util. Factor	0.91	0.86	0.91	0.91	0.91	1.00	1.00	0.91		1.00	0.91	
Frt	1.00	0.91	0.85	1.00	1.00	0.85	1.00	0.99		1.00	1.00	
Flt Protected	0.95	0.99	1.00	0.95	0.96	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1557	2814	1393	3113	1566	1531	1711	4606		1711	4911	
FIt Permitted	0.95	0.99	1.00	0.95	0.96	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1557	2814	1393	3113	1566	1531	1711	4606		1711	4911	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	59	26	100	874	22	149	82	2211	175	115	2595	16
RTOR Reduction (vph)	0	0	0	0	0	124	0	3	0	0	0	0
Lane Group Flow (vph)	47	88	50	594	302	25	82	2383	0	115	2611	0
Turn Type	Split	NA	Perm	Split	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	3	3	1 Cilli	4	4	1 Cilli	1	5		6	2	
Permitted Phases		Ü	3			4					_	
Actuated Green, G (s)	12.0	12.0	12.0	28.0	28.0	28.0	3.0	94.9		17.6	110.5	
Effective Green, g (s)	14.0	14.0	14.0	30.0	30.0	30.0	6.0	97.9		19.6	112.5	
Actuated g/C Ratio	0.08	0.08	0.08	0.17	0.17	0.17	0.03	0.54		0.11	0.62	
Clearance Time (s)	6.5	6.5	6.5	7.0	7.0	7.0	6.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.2		3.0	0.2	
	121	218	108	518	261	255	57	2505		186	3069	
Lane Grp Cap (vph) v/s Ratio Prot	0.03		100	0.19	c0.19	200	c0.05	c0.52		0.07	c0.53	
	0.03	0.03	c0.04	0.19	CU. 19	0.02	00.05	CU.52		0.07	00.55	
v/s Ratio Perm	0.20	0.40		1 15	1.10		1.44	0.95		0.60	0.85	
v/c Ratio	0.39	0.40	0.46	1.15	1.16	0.10				0.62		
Uniform Delay, d1	78.9	79.0	79.4	75.0	75.0	63.5	87.0	38.8		76.6	27.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.83	0.60		0.93	0.88	
Incremental Delay, d2	2.1	1.2	3.1	86.7	104.9	0.2	261.2	8.3		4.6	2.5	
Delay (s)	81.0	80.2	82.5	161.7	179.9	63.7	333.6	31.6		75.6	26.1	
Level of Service	F	F	F	F	F	Е	F	С		Е	C	
Approach Delay (s)		81.1			153.0			41.6			28.2	
Approach LOS		F			F			D			С	
Intersection Summary												
HCM 2000 Control Delay			55.2	H	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capac	city ratio		0.96									
Actuated Cycle Length (s)			180.0	Sı	um of lost	time (s)			18.5			
Intersection Capacity Utilizat	ion		88.4%	IC	U Level o	of Service	!		Ε			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	*	1	-	*	1	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	4			ተተተ	71	7	ተተተ	
Traffic Volume (vph)	0	0	0	0	122	0	0	2374	170	57	2733	0
Future Volume (vph)	0	0	0	0	122	0	0	2374	170	57	2733	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					6.0			2.5	2.0	2.5	2.5	
Lane Util. Factor					0.95			0.91	1.00	1.00	0.91	
Frt					1.00			1.00	0.85	1.00	1.00	
Flt Protected					1.00			1.00	1.00	0.95	1.00	
Satd. Flow (prot)					1711			4916	1531	1711	4916	
Flt Permitted					1.00			1.00	1.00	0.04	1.00	
Satd. Flow (perm)					1711			4916	1531	79	4916	
Peak-hour factor, PHF	1.00	1.00	1.00	0.94	1.00	0.94	1.00	0.94	0.94	0.94	0.94	1.00
Adj. Flow (vph)	0	0	0	0	122	0	0	2526	181	61	2907	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	122	0	0	2526	181	61	2907	0
Turn Type				custom	NA			NA	pm+ov	Perm	NA	
Protected Phases				3	3			249	3		649	
Permitted Phases				3					249	649		
Actuated Green, G (s)					19.2			148.3	167.5	148.3	148.3	
Effective Green, g (s)					19.2			152.3	170.5	152.3	152.3	
Actuated g/C Ratio					0.11			0.85	0.95	0.85	0.85	
Clearance Time (s)					6.0				6.0			
Vehicle Extension (s)					4.0				4.0			
Lane Grp Cap (vph)					182			4159	1467	66	4159	
v/s Ratio Prot					c0.07			0.51	0.02		0.59	
v/s Ratio Perm									0.10	c0.77		
v/c Ratio					0.67			0.61	0.12	0.92	0.70	
Uniform Delay, d1					77.4			4.4	0.3	9.8	5.2	
Progression Factor					1.00			1.06	1.00	0.97	0.36	
Incremental Delay, d2					10.1			0.2	0.0	56.2	0.3	
Delay (s)					87.5			4.9	0.3	65.7	2.2	
Level of Service					F			Α	Α	Е	Α	
Approach Delay (s)		0.0			87.5			4.6			3.5	
Approach LOS		Α			F			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			5.8	F	ICM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacity ratio			0.91									
Actuated Cycle Length (s)			180.0	5	sum of los	t time (s)			13.5			
Intersection Capacity Utilization			67.6%		CU Level)		С			
Analysis Period (min)			15									
0.11. 11. 0												

c Critical Lane Group

	1	\rightarrow	*	1	-	*	1	†	-	1	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	414	74	1/1	र्स	77	J,	ተተኈ		ሻ	ተተጉ	
Traffic Volume (vph)	71	32	109	559	36	314	141	2146	250	250	2456	43
Future Volume (vph)	71	32	109	559	36	314	141	2146	250	250	2456	43
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1800	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	5.0	5.0	5.0	3.0	4.0		5.0	5.0	
Lane Util. Factor	0.91	0.86	0.91	0.91	0.91	1.00	1.00	0.91		1.00	0.91	
Frt	1.00	0.92	0.85	1.00	1.00	0.85	1.00	0.98		1.00	1.00	
Flt Protected	0.95	0.99	1.00	0.95	0.96	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1557	2830	1393	3113	1574	1531	1711	4584		1711	4903	
FIt Permitted	0.95	0.99	1.00	0.95	0.96	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1557	2830	1393	3113	1574	1531	1711	4584		1711	4903	
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	73	33	112	576	37	324	145	2212	258	258	2532	44
RTOR Reduction (vph)	0	0	0	0	0	273	0	5	0	0	1	0
Lane Group Flow (vph)	55	107	56	409	204	51	145	2465	0	258	2575	0
		NA			NA	Perm	Prot	NA	U	Prot	NA NA	
Turn Type Protected Phases	Split 3	3	Perm	Split 4	4	Pellili	1	5		6	2	
Permitted Phases	3	J	3	4	4	4	SALESHINGS	Э		Ö		
	12.0	12.0		20.4	20.4	4	6.0	00.4		22.2	108.4	
Actuated Green, G (s)	13.0	13.0	13.0	26.1	26.1	26.1	6.0	80.1		33.3		
Effective Green, g (s)	15.0	15.0	15.0	28.1	28.1	28.1	9.0	83.1		35.3	110.4	
Actuated g/C Ratio	0.08	0.08	0.08	0.16	0.16	0.16	0.05	0.46		0.20	0.61	
Clearance Time (s)	6.5	6.5	6.5	7.0	7.0	7.0	6.0	7.0		7.0	7.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.2		3.0	0.2	
Lane Grp Cap (vph)	129	235	116	485	245	239	85	2116		335	3007	
v/s Ratio Prot	0.04	0.04		c0.13	0.13		c0.08	c0.54		0.15	c0.53	
v/s Ratio Perm			c0.04			0.03						
v/c Ratio	0.43	0.46	0.48	0.84	0.83	0.21	1.71	1.16		0.77	0.86	
Uniform Delay, d1	78.4	78.6	78.8	73.8	73.7	66.3	85.5	48.5		68.5	28.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.79	0.63		0.95	0.90	
Incremental Delay, d2	2.3	1.4	3.1	12.6	20.8	0.4	358.7	79.2		8.1	2.6	
Delay (s)	80.7	80.0	81.9	86.4	94.5	66.7	426.7	109.9		72.9	28.0	
Level of Service	F	F	F	F	F	E	F	F		E	C	
Approach Delay (s)		80.7			81.4			127.4			32.1	
Approach LOS		F			F			F			С	
Intersection Summary												
HCM 2000 Control Delay		78.4	HC	CM 2000	Level of	Service		Е				
HCM 2000 Volume to Capacity ratio			1.01									
Actuated Cycle Length (s)			180.0	Sum of lost time (s)					18.5			
Intersection Capacity Utilization			92.8%	IC	U Level o	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	*	1	•	*	1	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				Ť	4			ተተተ	7	ሻ	ተተተ	
Traffic Volume (vph)	0	0	0	107	98	12	0	2143	345	21	2126	0
Future Volume (vph)	0	0	0	107	98	12	0	2143	345	21	2126	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				3.0	6.0			2.5	2.0	2.5	2.5	
Lane Util. Factor				0.95	0.95			0.91	1.00	1.00	0.91	
Frt				1.00	0.98			1.00	0.85	1.00	1.00	
Flt Protected				0.95	1.00			1.00	1.00	0.95	1.00	
Satd. Flow (prot)				1625	1676			4916	1531	1711	4916	
Flt Permitted				0.95	1.00			1.00	1.00	0.06	1.00	
Satd. Flow (perm)				1625	1676			4916	1531	107	4916	
Peak-hour factor, PHF	1.00	1.00	1.00	0.94	1.00	0.94	1.00	0.94	0.94	0.94	0.94	1.00
Adj. Flow (vph)	0	0	0	114	98	13	0	2280	367	22	2262	0
RTOR Reduction (vph)	0	0	0	0	3	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	103	119	0	0	2280	367	22	2262	0
Turn Type		T. Halley		custom	NA		555219516	NA	pm+ov	Perm	NA	Yes and
Protected Phases				3	3			249	3	1 Cilli	649	
Permitted Phases				3				240	249	649	0 7 0	
Actuated Green, G (s)				20.7	20.7			146.8	167.5	146.8	146.8	
Effective Green, g (s)				23.7	20.7			150.8	170.5	150.8	150.8	
Actuated g/C Ratio				0.13	0.11			0.84	0.95	0.84	0.84	
Clearance Time (s)				6.0	6.0			0.04	6.0	0.04	0.04	
Vehicle Extension (s)				4.0	4.0				4.0			
Lane Grp Cap (vph)				213	192			4118	1467	89	4118	
v/s Ratio Prot				0.06	c0.07			c0.46	0.03	03	0.46	
v/s Ratio Perm				0.00	CU.U1			CU.40	0.03	0.21	0.40	
v/c Ratio				0.48	0.62			0.55	0.21	0.21	0.55	
				72.5	75.9			4.4	0.23	3.0	4.4	
Uniform Delay, d1				1.00	1.00			0.56	1.00	0.41	0.35	
Progression Factor				2.4	6.9			0.50	0.1	1.2	0.33	
Incremental Delay, d2										2.5	1.6	
Delay (s)				74.8 E	82.8			2.6	0.4			
Level of Service		0.0		E	F 70.0			A	Α	Α	A . 7	
Approach Delay (s)		0.0			79.2			2.3			1.7	
Approach LOS		Α			Е			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			5.4	Н	ICM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.58									
Actuated Cycle Length (s)			180.0		sum of los				13.5			
Intersection Capacity Utiliza	ation		55.6%	10	CU Level	of Service	Э		В			
Analysis Period (min)			15									
c Critical Lane Group												