From:

Sent:
To:
Cc:
Subject:
Attachments:

Nick Driban ndriban@LENHARTTRAFFIC.COM
Sunday, November 25, 2018 12:36 PM
Leach, Stacy
Conklin, Christopher; Bossi, Andrew; mlenhart
RE: Updated LATIP Study
LATIP Memo Updated 20181112.pdf; Cut Through Memo 20181121.pdf

Stacy,

I've attached two traffic analysis memorandums that I would like to have entered into the Hillandale LATIP record. The two memos are as follows:

1. 'LATIP Memo Updated 20181112' - This document provides an updated analysis on the LATIP improvements, based on the memorandum that was previously approved by the Maryland State Highway Administration (SHA) and Montgomery County Department of Transportation (MCDOT). It was submitted to Chris Conklin and Andrew Bossi at MCDOT in the week leading up to the hearing, so it may have already been entered into the record by them, but I'm submitting it directly to you in case it has not been. This is the most up-to-date assessment of the benefits of the proposed improvements package. The cover letter details the necessity of this update as well as changes from the analyses previously approved by SHA and MCDOT.
2. 'Cut Through Memo 20181121' - This document was prepared as a response to concerns about cut-through traffic raised by the community prior to and during the hearing. As detailed in the document, while we believe the traffic calming measures already included along Elton Road as part of the slip ramp improvement will address the majority of community concerns, should the County elect to include additional changes to mitigate cut-through concerns we believe the recommendations in the attached memo are the optimal solution (to reduce cut-through traffic while maintaining the benefits at the intersection of MD 650 \& Powder Mill Road).

Thanks,
Nick

Nick Driban, P.E., PTOE
Associate Vice President

Office: (410) 216-3333 (Ext. 105)
Mobile: (410) 294-7195

Lenhart Traffic Consulting, Inc.

Transportation Planning \& Traffic Engineering

November 12, 2018

Ms. Stacy Leach
Montgomery County Department of Transportation
101 Monroe Street, $10^{\text {th }}$ Floor
Rockville, Maryland 20850

Re: REVISED White Oak LATIP Supplemental Transportation Analysis - Proposed Improvements at MD 650 (New Hampshire Avenue) \& Powder Mill Road/Elton Road

Dear Ms. Leach:
This letter is being prepared to provide an executive summary and additional context related to the attached memorandum detailing the REVISED White Oak LATIP Supplemental Analysis - MD 650 \& Powder Mill Road. The attached memorandum represents the most recent revision to a series of analyses conducted in support of the improvements proposed in the Hillandale area as part of the White Oak LATIP. This revision is necessary in order to provide an updated assessment of the benefits of the proposed improvements package which is being considered in the Public Hearing scheduled for November 15, 2018. Included herein is a brief history of the LATIP analyses in this area and a summary of the findings of this current revision to the analyses.

On February 14, 2017, the Montgomery County Council passed the Local Area Transportation Improvement Program (LATIP) for the White Oak Science Gateway area. As part of Council approval, $\$ 5,000,000$ for work was assigned to the MD 650/Powder Mill Road intersection for traffic operations improvements, but specific improvements were not identified. At the time, specific improvements were not identified in this area because there were some anomalies noted in the original analysis conducted in support of the LATIP which resulted in recommendations that differed substantially from the White Oak Science Gateway Master Plan and from trip analyses previously conducted by the Maryland State Highway Administration (SHA).

The specific anomalies identified in the original LATIP analysis included the omission of a substantial volume of u-turning traffic along northbound MD 650 at Powder Mill Road, as well as the incorrect coding of volumes within the traffic model for the northbound through movement along MD 650 at Powder Mill Road. Based on the original analysis conducted with these anomalies, the recommended LATIP improvement at the intersection of MD 650 at Powder Mill Road was the addition of a northbound right-turn lane, which the original analysis showed would reduce the average delay at the intersection to less than 80 seconds (the threshold for acceptable operations for the area according to the LATIP). However, when the anomalies in the traffic analysis were corrected, the new analysis showed that the recommended addition of the northbound right-turn lane did not, in fact, improve average delay to less than 80 seconds at the intersection. Further, as noted in the discussion above, the northbound right-turn lane was not consistent with the proposed Master Plan improvements at the intersection.

Based on these findings, a supplemental analysis was conducted by Lenhart Traffic Consulting in the spring of 2017 in order to determine improvements that would reduce delay for the MD 650 at Powder Mill Road intersection to less than the 80 second threshold, thereby meeting the LATIP adequacy requirement. The starting point for addressing the identified traffic operations issue in the supplemental analysis was the consideration of the Master Planned improvements. The Master Plan improvements call for, "from Holly Hall, add an eastbound left-turn lane; on Powder Mill Road, add a

Lenhart Traffic Consulting, Inc.
 Transportation Planning \& Traffic Engineering

westbound right-turn lane; and on MD 650, add a southbound left-turn lane." The eastbound left-turn lane and westbound right-turn lane were included in the proposed improvement package in the supplemental analysis document, as construction of these improvements appeared to be feasible with limited impacts to the surrounding land uses. In contrast, the Master Plan recommended southbound left-turn lane was not included in the improvements package analysis as it was determined that its construction would be so materially impactful and require such significant takings of land (e.g. the properties to the northeast, northwest and southeast would all be significantly impacted including impacts to existing parking and structures) that this improvement would simply be too costly and infeasible in the short, intermediate, and likely long terms.

Traffic analysis was therefore conducted with the two, viable identified improvements along Powder Mill only, however the results showed that the intersection would not operate below the 80 second delay threshold without additional improvements. As such, and in order to address the unsafe uturn traffic along northbound MD 650 at Powder Mill Road that was omitted from the original LATIP analysis, the slip-ramp from Elton Road was added to the two proposed improvements at the Powder Mill Road intersection. The reason for this improvement, as stated in the supplemental analysis, was to address the need to provide an alternate route to keep northbound u-turning traffic seeking to access the ramp to westbound I-495 (The Capital Beltway) away from the problematic intersection of MD 650 at Powder Mill Road in order to provide more 'green time' to the tremendous volume of vehicles traveling along MD 650. While other improvements at the intersection of MD 650 at Powder Mill Road were considered in lieu of the slip ramp, the close proximity of businesses along the northbound- and southbound approaches to the intersection simply left little room for any further improvement to take place directly at the intersection; stated differently, there are limited reasonable, feasible improvements at the intersection of MD 650 at Powder Mill Road beyond the Master Plan improvements along the eastbound- and westbound approaches to the intersection, which re included as part of the proposed package. The results of the supplemental analysis showed that with the improvements along eastbound and westbound Powder Mill Road, as well as the slip ramp, the intersection of MD 650 at Powder Mill Road would operate with delay below 80 seconds.

IT IS IMPORTANT TO NOTE that all supplemental analyses conducted prior to the version in the attached memo assumed that the only traffic reassigned to the Elton Road slip ramp was the northbound u-turning vehicles at the intersection of MD 650 at Powder Mill Road (shown on Exhibit 8a in the attached memo). The assumption to only reassign this volume was made in order to provide the most conservative analysis for agency review (SHA \& MCDOT). Even with this highly conservative analysis, the improvements at the intersection of MD 650 at Powder Mill Road were shown to be so substantial (and with nearly no impact to the intersection of MD 650 at Elton Road) that both SHA and MCDOT concurred with the findings and recommendations of the analysis.

THE PURPOSE OF THE ATTACHED REVISED SUPPLEMENTAL ANALYSIS is to provide a more realistic analysis of the proposed improvements package. Specifically, it is likely that with the implementation of the Elton Road slip ramp, a substantial portion of the traffic that currently exits the north side of the shopping center located in the southeast corner of the MD 650 at Powder Mill Road intersection and turns left onto Powder Mill Road before turning left onto New Hampshire Avenue would instead exit the southside of the shopping center to turn right onto Elton Road and immediately access the new slip ramp (see Exhibit 8 b in the attached memo). A traffic count was conducted to determine what proportion of the total left-turn volume from westbound Powder Mill Road onto MD

Lenhart Traffic Consulting, Inc.
 Transportation Planning \& Traffic Engineering

650 is traffic that exits the north end of the shopping center and makes this movement in order to access the I-495 ramp. The results of this count indicated that approximately 20% of the total westbound leftturn volume from Powder Mill road onto New Hampshire Avenue comes from the shopping center. While it is believed that if given the opportunity the vast majority of this traffic would instead choose to exit the south side of the shopping center to utilize the Elton Road slip ramp, for the purposes of providing a conservative (but more reasonable analysis) it was assumed that 75% of the traffic making this movement would divert to the proposed slip ramp. This equates to a diversion of only 15% of the total westbound left-turns from Powder Mill Road onto New Hampshire Avenue ($75 \% \times 20 \%=15 \%$) and the resulting diverted volume is shown on Exhibit 8 b of the attached memo (this analysis remains conservative in not accounting for any trips originating from within Hillandale currently exiting Green Forest Drive which could also utilize the ramp if given the opportunity).

Based on the assumptions documented above, as shown on Exhibit 9 of the attached memo the proposed improvements are projected to decrease delay for the intersection of MD 650 at Powder Mill Road by 40% in the AM peak hour and 45% in the PM peak hour compared to the No Build, with no measurable degradation in the level of service (LOS 'A') for the MD 650 at Elton Road intersection. THIS SIGNIFICANT IMPROVEMENT RESULTS with no diversion assumed through the neighborhood, but instead with traffic only diverted from the northbound u-turns and the shopping center traffic turning left onto Powder Mill Road and left onto MD 650 in order to access I- 495 west. The proposed improvements package is also shown to decrease peak hour travel times along MD 650 by between 14% and 66%, and to substantially reduce delay to all vehicles in the area.

Importantly, the substantial improvements in traffic operations at the intersection of MD 650 at Powder Mill Road, as well as for vehicles along MD 650 and within the overall study area are likely to negate some amount of the cut-through traffic that has been a perennial concern to neighbors along Elton Road and Wooded Way. As traffic moves more freely along the major roadways and through the larger intersections designed to handle it, the incentive to find alternate routes through local streets is decreased. To the degree cut-through traffic is an existing issue for the neighborhood, traffic calming remedies are included as part of the proposed improvements package which have the ability to further reduce the desirability of this maneuver, thereby mitigating cut-through traffic.

Based on the findings of the attached REVISED White Oak LATIP Supplemental Analysis - MD 650 \& Powder Mill Road, as well as the information contained in this letter, it is recommended that the proposed improvements included in the attached memo be approved and carried forward for design and construction as part of the White Oak LATIP.

Sincerely,

Michael Lenhart, P.E., PTOE President

Enclosure: REVISED White Oak LATIP Supplemental Analysis - MD 650 \& Powder Mill Road

Lenhart Traffic Consulting, Inc.

Transportation Planning \& Traffic Engineering

Memorandum:

Date:

November 12, 2018

TO: Mr. Chris Conklin
FROM: Mike Lenhart
Montgomery County DOT
101 Monroe Street, \#10
Rockville, MD 20850

RE: REVISED White Oak LATIP Supplemental Analysis - MD 650 \& Powder Mill Road

As part of this analysis, two scenarios were evaluated including:

- Total Conditions with no improvements (No Build) to intersection geometry and timings.
- Total Conditions with the following improvements:

1. An additional EB left-turn lane (including modifications to existing lane use) and WB right-turn lane at the intersection of MD 650 \& Powder Mill Road. Note that a dedicated WB right-turn lane at the intersection of MD 650 \& Powder Mill Road is present under Existing Conditions, however, the westbound right turn lane is only 50 ' long. This is far shorter than a typical turn lane and is completely unusable because access to the right turn lane is blocked by queues in the adjacent lanes. Therefore, this 50 ' lane was not treated as a right turn lane in the analysis of existing geometrics.
2. A slip ramp at the intersection of MD 650 \& Elton Road to provide direct access from Elton Road to I-495 WB.
3. Traffic calming along Elton Road in order to reduce speeds and enhance safety.

The following intersections were analyzed as part of this analysis including:

1. MD 650 \& Powder Mill Road
2. MD 650 \& Elton Road

In addition to this memo, the following exhibits and appendices have been included:
Exhibit 1 Presents a location map and shows the study intersections.
Exhibit 2 Provides the existing lane use and traffic controls devices.
Exhibit 3 Includes the existing peak hour traffic volumes at the intersections. Note that these counts were taken from SHA's ITMS website, and are the same counts used in the LATIP analysis. It should be noted however that the LATIP analysis had two errors in their existing traffic counts. The LATIP study failed to include northbound and southbound MD 650 U-turns, and had an incorrect through volume for northbound MD 650 in the morning peak hour.

LENHART TRAFFIC CONSULTING, INC.

Lenhart Traffic Consulting, Inc.

Transportation Planning \& Traffic Engineering

Exhibit 4 Provides the 2040 background peak hour traffic volumes which were taken from the White Oak LATIP with the exception of the background growth in traffic on the west leg of MD 650 at Powder Mill Road in and out of the Holly Hall apartments. The growth in traffic on the west leg is calculated in Exhibits 5 and 6 as follows.

Exhibit $5 \quad$ Contains the trip generation table for the Hillandale Gateway development. While the 2040 peak hour volumes from the White Oak LATIP generally accounted for traffic from planned developments in the area, in order to be conservative, trip generation and assignment were conducted separately for the Hillandale Gateway development as part of this study due to its immediate proximity to the study intersections and because it is one of the first sites planned for development in the White Oak LATIP area. Note that a trip credit was assumed for the existing 96 senior adult dwelling units. The proposed development is understood to consist of 146 senior adult dwelling units, 350 apartment units, and 24,500 square feet of shopping center.

Exhibit 6a-c Exhibits $6 \mathrm{a}-6 \mathrm{c}$ detail the residential, retail, and pass-by trip assignments for the planned Hillandale Gateway development. The trip assignment is based on the net increase in trips over and above the existing use. It should be noted that a right-in/right-out driveway is planned for the site in addition to the access from the west leg of the MD 650 \& Powder Mill Road intersection.

Exhibit 7 Combines the 2040 background peak hour traffic volumes shown on Exhibit 4 with the trip assignments shown on Exhibits $6 \mathrm{a}-6 \mathrm{c}$ to provide total traffic volumes.

Exhibits 8a-b Shows the assumed traffic diversions as a result of the construction of a slip ramp which would provide direct access from Elton Road to I-495 WB.

Exhibit 8c Combines the total traffic volumes shown on Exhibit 7 with the traffic diversions shown on Exhibits 8 a-b to provide total peak hour volumes with diversions. Note that these volumes were used in the "Total with Improvements" scenario.

Exhibit 9 Provides a table showing Level of Service using the HCS methodology at the two study intersections. The LATIP uses an 80 second threshold for the determination of intersection adequacy. In addition, the table provides overall corridor measures of effectiveness including travel time along MD 650 between the Capital Beltway and north of Powder Mill Road, as well as the total delay experienced by all vehicles traveling in the area (based on the study area included within the traffic model).

Exhibit 10 Shows the proposed lane use and traffic control devices under the "Total with Improvements" scenario.

Appendix A Provides supplemental information and turning movement counts.
Appendix B Provides the Synchro/SimTraffic worksheets.
Appendix C Includes concept design plans for the proposed improvements.

Lenhart Traffic Consulting, Inc.

Transportation Planning \& Traffic Engineering

The following information is a summary of the results of our analyses:
> Under Total Conditions without any improvements (No Build) to intersection geometry or timing, the signalized study intersection of MD 650 \& Powder Mill Road will operate with an overall intersection delay of greater than $\mathbf{8 0}$ seconds during the PM peak hour (76.9 seconds and 125.0 seconds during the AM and PM peak hours respectively). As mentioned previously, the LATIP uses an 80 second threshold for the determination of intersection adequacy. Therefore, intersection improvements are required in order to meet the LATIP guidelines.
> The "Total with Improvements" scenario includes a portion of the Master Plan improvements (EB Left + WB Right at MD 650 \& Powder Mill Road) and a slip ramp at the intersection of MD 650 \& Elton Road to provide direct access from Elton Road to I-495 WB. Under this scenario, the signalized study intersection of MD 650 \& Powder Mill Road will operate with an overall intersection delay of less than $\mathbf{8 0}$ seconds (46.0 seconds and 69.0 seconds during the AM and PM peak hours respectively) which satisfies the LATIP requirements. In addition, the intersection of MD 650 \& Elton Road will operate with 10 seconds of delay or less during both the AM and PM peak hours.
$>$ It should also be noted that the MD 650 Corridor will experience overall travel time improvements ranging from 14% to 66% depending on the direction of travel and peak hour. Furthermore, the total delay for all vehicles traveling in the area will be reduced by 38% in the AM peak hour and 14% in the PM peak hour with the proposed improvements.

Based on the results of this analysis, all signalized study intersections under the "Total with Improvements" scenario will operate with less than 80 seconds of delay and will satisfy LATIP requirements. If you have any questions regarding this matter, please do not hesitate to contact me at the number below. We look forward to your feedback and guidance in how you would like to proceed.

Thanks,
Mike

4 of 53

2040 Traffic Operations Summary

Intersection Operations
(Level of Service / Average Delay per Vehicle in Seconds)

\begin{tabular}{|c|c|c|}
\hline Morning Peak Hour \& No Build \& With Improvements \\
\hline 1). MD 650 \& Powder Mill Road Percent Improvement compared to No Build \& \begin{tabular}{|lll}
\hline\(E \quad 76.9\) \\
\\
\hline
\end{tabular} \& D 146.0

40%

\hline 2). MD 650 \& Elton Road \& A 14.8 \& A / 10.0

\hline Evening Peak Hour \& No Build \& With Improvements

\hline 1). MD 650 \& Powder Mill Road Percent Improvement compared to No Build \& Fr $\quad 1$| 125.0 |
| :--- | \& E $/ 169.0$

\hline 2). MD 650 \& Elton Road \& A 199.6 \& A / 9.1

\hline
\end{tabular}

Notes: 1. Results shown in the following format: Level of Service / Average Delay per Vehicle in Seconds
2. The Average Delay per Vehicle in Seconds is the average delay experienced by each and every vehicle passing through the intersection, i.e. an average delay of 60.0 seconds indicates that it takes every vehicle, on average, one minute to get through the intersection, regardless of which direction the vehicle is traveling.
3. All results are from Synchro/SimTraffic, a traffic analysis and microsimulation software package.

Corridor Measures of Effectiveness

Morning Peak Hour	No Build	With Improvements
MD 650 Travel Time (See Note 1, below) Northbound Percent Improvement compared to No Build Southbound Percent Improvement compared to No Build Total Network Delay (See Note 2, below) Percent Improvement compared to No Build		124 secs. 18% 170 secs. $66 \%$$\|$369 hours 38%
Evening Peak Hour	No Build	With Improvements
MD 650 Travel Time (See Note 1, below) Northbound Percent Improvement compared to No Build Southbound Percent Improvement compared to No Build Total Network Delay (See Note 2, below) Percent Improvement compared to No Build		546 secs. 44% 413 secs. $29 \%$$\|$514 hours 14%

Notes: 1. Average travel time in seconds from Capital Beltway to north of Powder Mill Road. This is a measure of how effectively traffic is moving along MD 650.
2. Total Network Delay $=$ Number of Vehicles \times Average Delay per Vehicle within the traffic model, which extends along MD 650 from Oakview Drive to Chalmers Road. It is a measure of how the overall transportation system is performing in this area.
3. All results are from Synchro/SimTraffic, a traffic analysis and microsimulation software package.

> Results of Traffic
> Operations Analyses

Exhibit

Whie oakLATTP A Alysid	\& Proposed Lane Use	Exhil

Appendix A
Supplemental Information
Turning Movement Counts

Station ID:	S1999150073	County:		Montaomery					Comments: LOS AM: A(0.62) PM: $\mathrm{B}(0.63)$					
Date:	Tuesday 01/13/2015	Town:		none										
Location:	MD 650 at ELTON RD	Weather:		Sunny										
Interval (dd):	15 min								PM PERIOD 12:00PM-19:00P					
		PEAK HOURS	AM PERIOD 6:00AM-12:00PM	Start	End	Volume	Los	V/C		Start	End	Volume	Los	V/C
				07:45	08:45	4684	A	0.62		17:15	18:15	4436	B	0.63

Hour Begin	MD 650					MD 650					Elton Rd					No Entrance					$\begin{aligned} & \text { Grand } \\ & \text { Total } \end{aligned}$
	From North					From South					From East										
6:00	0	1	340	0	341	0	0	207	11	218	0	6	0	2	8	0	0	0	0	0	567
6:15	0	1	367	0	368	0	0	304	15	319	0	15	0	2	17	0	0	0	0	0	704
6:30	0	14	488	0	502	0	0	341	38	379	0	15	0	4	19	0	0	0	0	0	900
6:45	0	4	492	0	496	0	0	425	23	448	0	31	0	4	35	0	0	0	0	0	979
7:00	0	2	540	0	542	0	0	475	30	505	0	24	0	8	32	0	0	0	0	0	1079
7:15	0	2	608	0	610	0	0	482	42	524	0	40	0	2	42	0	0	0	0	0	1176
7:30	0	10	573	0	583	2	0	530	34	564	0	32	0	7	39	0	0	0	0	0	1186
7:45	0	16	545	0	561	0	0	572	52	624	0	25	0	9	34	0	0	0	0	0	1219
$8: 00$	0	9	520	0	529	0	0	500	35	535	0	19	0	4	23	0	0	0	0	0	1087
8:15	0	12	606	0	618	0	0	486	30	516	0	25	0	5	30	0	0	0	0	0	1164
8:30	0	12	616	0	628	0	0	513	45	558	0	25	0	3	28	0	0	0	0	0	1214
8:45	0	4	532	0	536	0	0	507	41	548	0	14	0	6	20	0	0	0	0	0	1104
9:00	1	5	393	0	398	0	0	506	41	547	0	28	0	6	34	0	0	0	0	0	979
9:15	0	10	409	0	419	0	0	495	42	537	0	29	0	7	36	0	0	0	0	0	992
9:30	0	16	397	0	413	0	0	366	65	431	0	26	0	6	32	0	0	0	0	0	876
9:45	0	3	387	0	390	0	0	305	70	375	0	28	0	15	43	0	0	0	0	0	808
10:00	0	2	384	0	386	0	0	336	74	410	0	27	0	9	36	0	0	0	0	0	832
10:15	0	2	382	0	384	0	0	286	78	364	0	33	0	10	43	0	0	0	0	0	791
10:30	0	2	293	0	295	0	0	302	62	364	0	52	0	17	69	0	0	0	0	0	728
10:45	0	1	338	0	339	0	0	279	58	337	0	25	0	14	39	0	0	0	0	0	715

Page 3 of 7

Station ID:	51999150073		County	Montgomery					Comments: LOS AM: $\mathrm{A}(0.62) \mathrm{PM}: \mathrm{B}(0.63)$					
Date:	Tuesday 01/13/2015		Town:	none										
Location:	MD 650 at ELTON RD	Weather: S			Sunny									
Interval (dd):	15 min		AM PERIOD6:00AM-12:00PM	Start	End	Volume	Los	v/c	$\begin{aligned} & \text { PM PERIOD } \\ & \text { 12:00PM-19:00P } \end{aligned}$	Start	End	Volume	Los	v/C
		PEAK HOURS		07:45	08:45	4684	A	0.62		17:15	18:15	4436	B	0.63

Page 6 of 7

Station ID:	S1999150073		Count	Montaomery					Comments: LOS AM: $\mathrm{A}(0.62) \mathrm{PM}$: $\mathrm{B}(0.63)$					
Date:	Tuesday 01/13/2015		Town:	none										
Location:	MD 650 at ELTON RD	Weather: Su			Sunny									
Interval (dd):	15 min								PM PERIOD12:00PM-19:00P					
		PEAK hours	$\begin{aligned} & \text { AM PERIOD } \\ & \text { 6:00AM-12:00PM } \end{aligned}$	Start	End	Volume	Los	v/c		Start	End	Volume	Los	V/C
				07:45	08:45	4684	A	0.62		17:15	18:15	4436	B	0.63

Page 7 of 7

Page 1 of 7

17:30	1]	49	486.	1	536	$20]$	$11 \mid$	457]	49	517	0	109	7	62	178	01	8	6	21	35	1266
17:45	,	55	466	2	525	11	10	$491 \mid$	62	563	0	92	10	75	177	0	7	4	13	24	1289
18:00	0	34	409	2	445	12	14	480	55	549	0	118	4	58	180	0	10	2	9	21	1195
18:15	1	39	385	1	425	13	10	449	53	512	0	111	1	40	152	0	15	4	4	23	1112
18:30	2	26	414	1	441	$7{ }^{\text {7 }}$	11	431	55	497	0	82	4	59	145	0	9	4	11	24	1107
18:45	1.	32	317	1	350	6	7	388	36	431	0	73	0	52	125	0	11	1	12	24	930
Total:	56	1650	18982	124	20756	533	539	18414	2076	21029	7	5529	198	2000	7727	0	380	176	756	1312	50824
AM Peak:	2	95	2079	8	2182	26	48	1694	147	1889	0	733	17	110	860	0	16	8	48	72	5003
PM Peak:	5	214	1959	10	2183	53	35	1887	219	2141	0	422	25	260	707	0	38	16	70	124	5155

Page 3 of 7

Station ID:	S1998150181		County:	Montgomery					Comments: LOS AM: D(0.85) PM: $\mathrm{D}(0.85)$					
Date:	Thursday 01/22/2015		Town:	none										
Location:	MD 650 at Powder Mill Rd		Weather:	Sunny										
Interval (dd):	15 min								$\begin{aligned} & \text { PM PERIOD } \\ & \text { 12:00PM-19:00P } \end{aligned}$					
		PEAK	$\begin{aligned} & \text { AM PERIOD } \\ & \text { 6:00AM-12:00PM } \end{aligned}$	Start	End	Volume	Los	v/c		Start	End	Volume	Los	v/C
		Hours		07:15	08:15	5003	D	0.85		17:00	18:00	5155	D	0.85

Hour Ending	MD 650			MD 650			Powder Mill Rd			Powder Mill Rd		
	North Leg			South Leg			East Leg			West Leg		
	School Children	Pedestrians	Bicycles	School Children	Pedestrains	Bicycles	School Children	Pedestrians	Bicycles	School Children	Pedestrians	Bicydes
6:00	0	0	0	0	4	0	0	0	0	0	0	0
6:15	0	0	0	0	7	0	0	4	0	0	5	0
6:30	0	1	0	0	5	0	0	2	0	0	1	0
6:45	0	0	0	0	5	0	0	2	0	0	1	0
7:00	0	1	0	0	10	0	0	4	0	0	4	0
7:15	0	1	0	0	6	0	0	6	0	0	8	0
7:30	0	1	0	0	7	0	0	3	0	0	5	0
7:45	0	0	0	0	7	0	0	4	0	0	4	0
8:00	0	0	0	0	1	0	0	0	0	0	1	0
8:15	0	1	0	0	3	0	0	3	0	0	7	0
8:30	0	0	0	0	3	0	0	0	0	0	1	0
8:45	0	0	0	0	6	0	0	2	0	0	6	0
9:00	0	1	0	0	12	0	0	6	0	0	5	0
9:15	0	0	0	0	8	0	0	0	0	0	5	0
9:30	0	2	0	0	6	0	0	0	0	0	3	0
9:45	0	4	0	0	14	0	0	0	0	0	12	0
10:00	0	2	0	0	6	0	0	0	0	0	9	0
10:15	0	4	0	0	7	0	0	2	0	0	6	0
10:30	0	1	0	0	3	0	0	3	0	0	13	0
10:45	0	3	0	0	5	0	0	1	0	0	4	0
11:00	0	2	0	0	7	0	0	4	0	0	6	0
11:15	0	2	0	0	7	0	0	0	0	0	7	0
11:30	0	6	0	0	4	0	0	1	0	0	2	0
11:45	0	1	0	0	6	0	0	0	0	0	1	0
12:00	0	3	0	0	4	0	0	0	0	0	3	0
12:15	0	0	0	0	3	0	0	0	0	0	1	0
12:30	0	1	0	0	11	0	0	0	0	0	7	0
12:45	0	1	0	0	9	0	0	0	0	0	5	0

Page 4 of 7

Page 6 of 7

Station ID:	S1998150181	County:		Montgomery					Comments: LOS AM: $\mathrm{D}(0.85) \mathrm{PM}: \mathrm{D}(0.85)$					
Date:	Thursday 01/22/2015	Town:		none										
Location:	MD 650 at Powder Mill Rd	Weather:		Sunny										
Interval (dd):	15 min													
		PEAK HOURS	AM PERIOD 6:00AM-12:OOPM	Start	End	Volume	Los	V/C	PM PERIOD 12:00PM-19:00P	Start	End	Volume	Los	v/C
				07:15	08:15	5003	D	0.85		17:00	18:00	5155	D	0.85

Appendix B

Synchro/SimTraffic Worksheets

HCM Signalized Intersection Capacity Analysis
1: MD 650 \& Powder Mill Rd
08/07/2017

HCM Signalized Intersection Capacity Analysis
3: MD 650 \& Elton Rd

HCM Signalized Intersection Capacity Analysis
1：MD 650 \＆Powder Mill Rd
08／07／2017

	\Rightarrow	\rightarrow	\rangle	7			4	\dagger	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	\uparrow	＂	閙	4		\％	个个角		\％	性家	
Traffic Volume（vph）	71	32	109	496	36	300	194	2160	250	250	2456	43
Future Volume（vph）	71	32	109	496	36	300	194	2160	250	250	2456	43
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1800	1900	1900	1900	1900
Total Lost time（s）	4.5	4.5	4.5	5.0	5.0		3.0	4.0		5.0	5.0	
Lane Util．Factor	1.00	1.00	1.00	0.91	0.91		1.00	0.91		1.00	0.91	
Fit	1.00	1.00	0.85	1.00	0.88		1.00	0.98		1.00	1.00	
FIt Protected	0.95	1.00	1.00	0.95	0.99		0.95	1.00		0.95	1.00	
Satd．Flow（prot）	1711	1801	1531	3113	1438		1711	4585		1711	4903	
Flt Permitted	0.95	1.00	1.00	0.95	0.99		0.95	1.00		0.95	1.00	
Satd．Flow（perm）	1711	1801	1531	3113	1438		1711	4585		1711	4903	
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	73	33	112	511	37	309	200	2227	258	258	2532	44
RTOR Reduction（vph）	0	0	0	，	66	0	0	8	0	0	1	0
Lane Group Flow（vph）	73	33	112	460	331	0	200	2477	0	258	2575	0
Turn Type	Split	NA	Perm	Split	NA		Prot	NA		Prot	NA	
Protected Phases	，	3		4	4		1	5		6	2	
Permitted Phases			3									
Actuated Green，G（s）	18.5	18.5	18.5	37.0	37.0		9.0	76.0		21.0	89.0	
Effective Green， g （s）	20.5	20.5	20.5	39.0	39.0		12.0	79.0		23.0	91.0	
Actuated g／C Ratio	0.11	0.11	0.11	0.22	0.22		0.07	0.44		0.13	0.51	
Clearance Time（s）	6.5	6.5	6.5	7.0	7.0		6.0	7.0		7.0	7.0	
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	0.2		3.0	0.2	
Lane Grp Cap（vph）	194	205	174	674	311		114	2012		218	2478	
v / s Ratio Prot	0.04	0.02		0.15	c0．23		c0．12	c0．54		c0．15	0.53	
v／s Ratio Perm			c0．07									
v／c Ratio	0.38	0.16	0.64	0.68	1.06		1.75	1.23		1.18	1.04	
Uniform Delay，d1	73.8	72.0	76.3	64.8	70.5		84.0	50.5		78.5	44.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.15	0.66		1.19	1.33	
Incremental Delay，d2	1.2	0.4	7.9	2.9	69.3		370.0	108.2		112.3	27.1	
Delay（s）	75.1	72.4	84.2	67.7	139.8		466.2	141.6		205.7	86.3	
Level of Service	E	E	F	E	F		F	F		F	F	
Approach Delay（s）		79.3			101.1			165.8			97.2	
Approach LOS		E			F			F			F	
Intersection Summary												
HCM 2000 Control Delay			125.0	HCM 2000 Level of Service					F			
HCM 2000 Volume to Capacity ratio			1.14									
Actuated Cycle Length（s）			180.0		Sum of lost	ime（s）			18.5			
Intersection Capacity Utilization			99．3\％	ICU Level of Service					F			
Analysis Period（min）			15									

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
3: MD 650 \& Elton Rd

Arterial Level of Service No Build AM Peak

Arterial Level of Service: NB MD 650

Cross Street	Node	Delay $($ s/veh $)$	Travel time (\mathbf{s})	Dist (mi)	Arterial Speed
Oakview Dr	4	47.4	434.7	0.1	8
Ramps 4\&1	72	2.5	8.2	0.1	25
	114	0.8	8.1	0.1	37
Ramp 2	58	0.9	5.9	0.1	45
Elton Rd	66	32.4	41.2	0.1	9
Ramp 8	3	3.0	6.3	0.0	21
Powder Mill Rd	143	6.8	13.5	0.1	16
	2	12.1	15.6	0.0	6
Total	1	34.2	42.6	0.1	5
	5	18.6	73.4	0.6	30

Arterial Level of Service: SB MD 650

Cross Street	Node	Delay $(\mathrm{s} / \mathrm{veh})$	Travel time (s)	Dist (mi)	Arterial Speed
Chalmers Rd	5	39.6	136.1	0.1	6
Powder Mill Rd	1	420.6	476.6	0.6	5
	2	7.8	12.9	0.1	15
Ramp 8	143	1.1	3.4	0.0	28
Elton Rd	3	3.2	8.5	0.1	25
Ramp 2	66	0.6	2.6	0.0	51
	58	2.4	13.0	0.1	29
Ramps 4\&1	114	1.0	7.0	0.1	38
Oakview Dr	72	2.7	9.6	0.1	31
Total	4	11.1	17.0	0.1	12

Arterial Level of Service: NB MD 650

Cross Street	Node	Delay $($ s/veh $)$	Travel time (s)	Dist (mi)	Arterial Speed
Oakview Dr	4	63.9	2063.5	0.1	6
Ramps 4\&1	72	2.9	8.6	0.1	23
	114	0.8	8.1	0.1	37
Ramp 2	58	0.8	5.8	0.1	45
Elton Rd	66	40.2	49.0	0.1	8
Ramp 8	3	3.8	7.2	0.0	18
	143	10.9	17.6	0.1	12
Powder Mill Rd	2	12.9	16.6	0.0	6
	1	22.4	528.1	0.1	7
Total	5	8.7	64.2	0.6	34

Arterial Level of Service: SB MD 650

Cross Street	Node	Delay $($ s/veh $)$	Travel time (s)	Dist $($ mi)	Arterial Speed
Chalmers Rd	5	54.2	338.8	0.1	5
Powder Mill Rd	1	464.3	548.9	0.6	4
	2	8.6	13.7	0.1	14
Ramp 8	143	1.1	3.4	0.0	27
Elton Rd	3	8.4	13.7	0.1	15
Ramp 2	66	1.1	3.1	0.0	42
	58	2.2	12.9	0.1	29
	114	0.9	6.8	0.1	39
Ramps 4\&1	72	2.1	9.0	0.1	33
Oakview Dr	4	11.7	17.7	0.1	11
Total		554.6	968.1	1.2	7

Total Network Performance By Run

Run Number	1	2	3	4	5	Avg
Denied Delay (hr)	674.9	630.3	565.4	568.8	551.5	598.2
Denied Del/ $\mathrm{Veh}(\mathrm{s})$	224.7	210.3	188.6	189.7	184.8	199.6
Total Delay $(\mathrm{hr}$)	635.4	597.8	550.6	593.7	589.0	593.3
Total Del/Veh (s)	220.2	211.0	193.9	207.9	207.5	208.1

SimTraffic Performance Report
No Build PM Peak
Total Network Performance By Run

Run Number	1	2	3	4	5	Avg
Denied Delay (hr)	1635.0	1568.1	1511.3	1615.7	1504.2	1566.9
Denied Del/Veh (s)	471.3	457.1	434.5	465.3	430.3	451.6
Total Delay (hr)	626.0	605.6	580.8	591.0	595.7	599.8
Total Del/Veh (s)	222.5	217.6	206.2	211.3	207.8	213.1

HCM Signalized Intersection Capacity Analysis
1: MD 650 \& Powder Mill Rd

HCM Signalized Intersection Capacity Analysis
3: MD 650 \& Elton Rd

| | | | | | | | | | | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

HCM Signalized Intersection Capacity Analysis
1: MD 650 \& Powder Mill Rd

HCM Signalized Intersection Capacity Analysis
3: MD 650 \& Elton Rd

c Critical Lane Group

Arterial Level of Service: NB MD 650

Cross Street	Node	Delay $($ s/veh $)$	Travel time (s)	Dist (mi)	Arterial Speed
Oakview Dr	6	48.4	468.7	0.1	8
Ramps 4\&1	72	2.5	8.2	0.1	25
	114	0.8	8.1	0.1	37
Ramp 2	58	0.6	5.7	0.1	47
Elton Rd	66	18.4	27.1	0.1	14
Ramp 8	3	2.9	6.4	0.0	21
Powder Mill Rd	143	5.4	12.7	0.1	17
	2	5.9	9.1	0.0	11
Total	1	21.5	30.1	0.1	7
	5	9.6	65.8	0.6	34

Arterial Level of Service: SB MD 650

Cross Street	Node	Delay $(\mathrm{s} / \mathrm{veh})$	Travel time (s)	Dist $($ mi)	Arterial Speed
Chalmers Rd	5	5.2	12.7	0.1	24
Powder Mill Rd	1	87.0	140.1	0.6	16
	2	7.4	12.3	0.1	15
Ramp 8	143	1.5	4.0	0.0	25
	3	5.2	9.9	0.1	21
Ramp 2	66	0.9	3.5	0.0	38
	58	3.3	13.9	0.1	27
	114	1.5	7.4	0.1	36
Ramps 4\&1	72	4.3	11.3	0.1	26
Oakview Dr	6	12.9	18.8	0.1	11
Total		129.1	234.0	1.2	18

Arterial Level of Service: NB MD 650

Cross Street	Node	Delay $(s / v e h)$	Travel time (s)	Dist (mi)	Arterial Speed
Oakview Dr	7	64.1	2138.7	0.1	6
Ramps 4\&1	72	2.8	8.5	0.1	24
	114	0.8	8.1	0.1	37
Ramp 2	58	0.6	5.6	0.1	47
Elton Rd	66	25.7	34.4	0.1	11
Ramp 8	3	2.9	6.4	0.0	20
Powder Mill Rd	143	9.8	17.2	0.1	12
	2	9.3	12.1	0.0	8
Total	1	22.1	447.3	0.1	7

Arterial Level of Service: SB MD 650

Cross Street	Node	Delay $($ s $/ v e h)$	Travel time (\mathbf{s})	Dist $($ mi) $)$	Arterial Speed
Chalmers Rd	5	18.6	42.0	0.1	12
Powder Mill Rd	1	316.6	385.1	0.6	6
Ramp 8	2	7.4	12.5	0.1	16
	143	0.9	3.3	0.0	28
Ramp 2	3	4.1	8.8	0.1	24
	66	0.8	3.4	0.0	39
Ramps 4\&1	58	1.7	12.3	0.1	31
Oakview Dr	114	0.8	6.8	0.1	39
Total	72	2.1	9.0	0.1	33
	7	11.2	17.1	0.1	12

Hillandale
Lenhart Traffic Consulting

SimTraffic Performance Report
Total AM with Improvements (15\% Diverted)
Total Network Performance By Run

Run Number	1	2	3	4	5	Avg
Denied Delay (hr)	775.8	674.7	661.9	736.5	623.0	694.4
Denied Del/Neh (s)	253.7	224.7	219.5	242.7	208.9	230.0
Total Delay (hr)	336.5	355.3	398.5	351.7	405.1	369.4
Total Del/Neh (s)	119.0	125.6	139.7	125.3	146.0	131.1

SimTraffic Performance Report
Total PM with Improvements (15\% Diverted)

Total Network Performance By Run

Run Number	1	2	3	4	5	Avg
Denied Delay (hr)	1334.4	1475.7	1359.4	1423.4	1312.9	1381.2
Denied DelNeh (s)	388.1	426.7	392.5	416.7	378.1	400.4
Total Delay (hr)	561.3	544.0	501.4	422.3	542.3	514.3
Total Del/ Neh (s)	192.9	187.6	172.9	147.9	185.2	177.4

Appendix C

Concept Improvement Plans

(1) BOHLER

LATIP EXHIBIT
포련․․․․․․․

LATIP EXHIBIT
DRAFT

ymaza

Lenhart Traffic Consulting, Inc.
 Transportation Planning \& Traffic Engineering

Memorandum:

TO:
Mr. Chris Conklin
FROM: Mike Lenhart
Montgomery County DOT
101 Monroe Street, \#10
Rockville, MD 20850

RE: White Oak LATIP Supplemental Analysis - Cut-through Traffic

This memorandum is being completed in response to concerns raised about cut-through traffic as a result of the proposed slip-ramp from Elton Road to I-495 westbound. Based on the content of the testimony at the November 15, 2018 Public Hearing for this project, as well as on available traffic volume data, it appears that the primary concern associated with cut-through traffic is more about safety (with vehicles unsafely traveling at high speeds through the residential neighborhood) than about the actual volume of vehicles cutting-through the neighborhood.

To the extent the cut-through issue is related to safety and speeds, the recent series of speed humps installed by Prince George's County along Wooded Way and Elton Road, coupled with the proposed traffic calming to be installed with the slip ramp on the Montgomery County side of Elton Road should substantially decrease speeds and enhance safety. The proposed traffic calming to be installed along Elton Road in conjunction with the slip ramp includes a speed hump as well as several measures designed to narrow the roadway width and effectively reduce speeds. We believe these measures will substantially enhance safety along Elton Road (and Wooded Way) and effectively address the vast majority of safety related cut-through issues noted to date. Importantly, these measures will address vehicles traveling east or west whether they are associated with the ramp or not (i.e existing issues).

While we believe the above measures will be highly effective in providing relief related to unsafe cutthrough traffic along Elton Road, should the County decide that additional measures are necessary to address the volume component of the cut-through traffic issue, the most effective options for reducing this traffic would involve implementing turn restrictions from MD 212 onto Wooded Way or converting Wooded Way to one-way. These improvements would be cost-effective and would directly address the source of the cut-through traffic.

However, given that these improvements require action from Prince George's County, which is beyond Montgomery County's control, if Montgomery County wishes to take direct action to mitigate cut-through traffic it is our recommendation that westbound traffic be prohibited along Elton Road immediately east of Avenel Garden Lane (between the predominantly commercial land uses to the west and residential neighborhood to the east). Prohibiting westbound traffic from passing this location would completely negate the potential for any neighborhood cut-through traffic associated with the ramp. Should MCDOT find it necessary, this solution would maintain the majority of the benefits of the proposed slip ramp by providing access to I-495W for travelers from the office, industrial, and shopping center uses along Elton

Lenhart Traffic Consulting, Inc.

Transportation Planning \& Traffic Engineering

Road without requiring that they traverse the problematic and congested MD 650 \& Powder Mill Road intersection which we are trying to improve (as explained in detail in the REVISED White Oak LATIP Supplemental Analysis dated November 12, 2018).

In order to understand the effects of restricting westbound traffic along Elton Road, an analysis was conducted comparing the results shown in the November 12, 2018 REVISED White Oak LATIP Supplemental Analysis (the 'November 12 memo') to results if westbound traffic were to be restricted. The analysis was completed as follows:

Three scenarios were evaluated. The first two scenarios were taken directly from the November 12 memo, while the third scenario is a new scenario showing the impacts of vehicles being diverted to the MD 650 \& Powder Mill Road intersection if the westbound restriction along Elton Lane were to be implemented. The scenarios are as follows:

- Total Conditions with no improvements (No Build) to intersection geometry and timings.
- Total Conditions with the following improvements:

1. An additional EB left-turn lane (including modifications to existing lane use) and WB right-turn lane at the intersection of MD 650 \& Powder Mill Road. Note that a dedicated WB right-turn lane at the intersection of MD 650 \& Powder Mill Road is present under Existing Conditions, however, the westbound right turn lane is only 50 ' long. This is far shorter than a typical turn lane and is completely unusable because access to the right turn lane is blocked by queues in the adjacent lanes. Therefore, this 50' lane was not treated as a right turn lane in the analysis of existing geometrics.
2. A slip ramp at the intersection of MD 650 \& Elton Road to provide direct access from Elton Road to I-495 WB.
3. Traffic calming along Elton Road in order to reduce speeds and enhance safety.

- Total Conditions with the above improvements and the westbound restriction on Elton Road.

The following intersections were analyzed as part of this analysis including:

1. MD 650 \& Powder Mill Road
2. MD 650 \& Elton Road

In addition to this memo, the following exhibits and appendices have been included:
Exhibit 1 Presents a location map, shows the study intersections, and notes where the proposed westbound restriction would be implemented along Elton Road.

Exhibit 2 Shows the Total Peak Hour Volumes with the Slip Ramp. This exhibit is the same as Exhibit 8 c in the November 12 memo.

Exhibit 3 Displays the diversions that would result if westbound traffic is restricted along Elton Road.

Exhibit 4 Includes the Total Peak Hour Volumes resulting from implementation of the slip ramp and the westbound restriction along Elton Road.

Lenhart Traffic Consulting, Inc.

Transportation Planning \& Traffic Engineering

Exhibit 5 Provides a table showing Level of Service using the HCS methodology at the two study intersections for each of the three scenarios. The LATIP uses an 80 second threshold for the determination of intersection adequacy.

The following information is a summary of the results of our analyses:
\rightarrow The improvements proposed as part of this project (without the westbound restriction along Elton Road) are projected to enhance operations at the intersection of MD 650 \& Powder Mill by 40% during the AM peak hour and 43% during the PM peak hour compared to the No Build scenario.
> The implementation of a westbound restriction along Elton Road (and associated diverted traffic to the MD 650 \& Powder Mill intersection) is slightly less beneficial to the intersection of MD 650 \& Powder Mill Road than if no restriction were in place, however even so there is still a 28% benefit during the AM peak hour and 37% benefit during the PM peak hour compared to the No Build.
$>$ All intersections will continue to operate within the 80 second LATIP delay threshold under the scenario where the improvements are implemented and a westbound restriction is implemented along Elton Road in order to reduce cut-through traffic.

We welcome the opportunity to discuss our analysis and assumptions however, based on the results of this analysis, all signalized study intersections under the "Total with Improvements and Westbound Restriction on Elton Road" scenario will operate with less than 80 seconds of delay and will satisfy LATIP requirements. If you have any questions regarding this matter, please do not hesitate to contact me at the number below. We look forward to your feedback and guidance in how you would like to proceed.

Thanks, Mike

hie	Diversions as a Result of Westbound Restriction	Exhibit
\%emamatcosumemc		

HCM Signalized Intersection Capacity Analysis
1: MD 650 \& Powder Mill Rd
AM Total AM with Improvements with 15\% Left Turns Diverted \& WB Restriction

Hillandale
Lenhart Traffic Consulting

11/21/2018
Synchro 9 Report

HCM Signalized Intersection Capacity Analysis
3: MD 650 \& EIton Rd
AM Total AM with Improvements with 15\% Left Turns Diverted \& WB Restriction

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
1: MD 650 \& Powder Mill Rd
Total PM with Improvements with 15\% Left Turns Diverted \& WB Restriction

Hillandale
Lenhart Traffic Consulting

Synchro 9 Report

HCM Signalized Intersection Capacity Analysis
3：MD 650 \＆Elton Rd
Total PM with Improvements with 15\％Left Turns Diverted \＆WB Restriction

	4	\rightarrow	\square	7	\pm	4	4	\dagger	p	－	\dagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				＊	\pm			性中	「	7	俐	
Traffic Volume（vph）	0	0	0	107	98	12	0	2143	345	21	2126	0
Future Volume（vph）	0	0	0	107	98	12	0	2143	345	21	2126	0
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）				3.0	6.0			2.5	2.0	2.5	2.5	
Lane Util．Factor				0.95	0.95			0.91	1.00	1.00	0.91	
Fit				1.00	0.98			1.00	0.85	1.00	1.00	
Flt Protected				0.95	1.00			1.00	1.00	0.95	1.00	
Satd．Flow（prot）				1625	1676			4916	1531	1711	4916	
Flt Permitted				0.95	1.00			1.00	1.00	0.06	1.00	
Satd．Flow（perm）				1625	1676			4916	1531	107	4916	
Peak－hour factor，PHF	1.00	1.00	1.00	0.94	1.00	0.94	1.00	0.94	0.94	0.94	0.94	1.00
Adj．Flow（vph）	0	0	0	114	98	13	0	2280	367	22	2262	0
RTOR Reduction（vph）	0	0	0	0	3	0	0	0	0	0	0	
Lane Group Flow（vph）	0	0	0	103	119	0	0	2280	367	22	2262	
Turn Type				custom	NA			NA	pm＋ov	Perm	NA	
Protected Phases				3	3			249	3		649	
Permitted Phases				3					249	649		
Actuated Green，G（s）				20.7	20.7			146.8	167.5	146.8	146.8	
Effective Green，g（s）				23.7	20.7			150.8	170.5	150.8	150.8	
Actuated g／C Ratio				0.13	0.11			0.84	0.95	0.84	0.84	
Clearance Time（s）				6.0	6.0				6.0			
Vehicle Extension（s）				4.0	4.0				4.0			
Lane Grp Cap（vph）				213	192			4118	1467	89	4118	
v／s Ratio Prot				0.06	c0．07			c0．46	0.03		0.46	
v／s Ratio Perm									0.21	0.21		
v／c Ratio				0.48	0.62			0.55	0.25	0.25	0.55	
Uniform Delay，d1				72.5	75.9			4.4	0.3	3.0	4.4	
Progression Factor				1.00	1.00			0.56	1.00	0.41	0.35	
Incremental Delay，d2				2.4	6.9			0.2	0.1	1.2	0.1	
Delay（s）				74.8	82.8			2.6	0.4	2.5	1.6	
Level of Service				E	F			A	A	A	A	
Approach Delay（s）		0.0			79.2			2.3			1.7	
Approach LOS		A			E			A			A	

Intersection Summary			
HCM 2000 Control Delay	5.4	HCM 2000 Level of Service	A
HCM 2000 Volume to Capacity ratio	0.58		13.5
Actuated Cycle Length（s）	180.0	Sum of lost time（s）	B
Intersection Capacity Utilization	55.6%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

