skip to main content
10.1145/3581784.3627044acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article
Free Access

The Simple Cloud-Resolving E3SM Atmosphere Model Running on the Frontier Exascale System

Authors Info & Claims
Published:11 November 2023Publication History

ABSTRACT

We present an efficient and performance portable implementation of the Simple Cloud Resolving E3SM Atmosphere Model (SCREAM). SCREAM is a full featured atmospheric global circulation model with a nonhydrostatic dynamical core and state-of-the-art parameterizations for microphysics, moist turbulence and radiation. It has been written from scratch in C++ with the Kokkos library used to abstract the on-node execution model for both CPUs and GPUs. SCREAM is one of only a few global atmosphere models to be ported to GPUs. As far as we know, SCREAM is the first such model to run on both AMD GPUs and NVIDIA GPUs, as well as the first to run on nearly an entire Exascale system (Frontier). On Frontier, we obtained a record setting performance of 1.26 simulated years per day for a realistic cloud resolving simulation.

References

  1. Tal Ben-Nun, Linus Groner, Florian Deconinck, Tobias Wicky, Eddie Davis, Johann Dahm, Oliver D. Elbert, Rhea George, Jeremy McGibbon, Lukas Trümper, Elynn Wu, Oliver Fuhrer, Thomas Schulthess, and Torsten Hoefler. 2022. Productive Performance Engineering for Weather and Climate Modeling with Python. In SC22: International Conference for High Performance Computing, Networking, Storage and Analysis. 1--14. Google ScholarGoogle ScholarCross RefCross Ref
  2. L. Bertagna, M. Deakin, O. Guba, D. Sunderland, A. M. Bradley, I. K. Tezaur, M. A. Taylor, and A. G. Salinger. 2019. HOMMEXX 1.0: a performance-portable atmospheric dynamical core for the Energy Exascale Earth System Model. Geoscientific Model Development 12, 4 (2019), 1423--1441. Google ScholarGoogle ScholarCross RefCross Ref
  3. Luca Bertagna, Oksana Guba, Mark A. Taylor, James G. Foucar, Jeff Larkin, Andrew M. Bradley, Sivasankaran Rajamanickam, and Andrew G. Salinger. 2020. A Performance-Portable Nonhydrostatic Atmospheric Dycore for the Energy Exascale Earth System Model Running at Cloud-Resolving Resolutions. In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. 1--14. Google ScholarGoogle ScholarCross RefCross Ref
  4. Kotaro Bessho, Kenji Date, Masahiro Hayashi, Akio Ikeda, Takahito Imai, Hidekazu Inoue, Yukihiro Kumagai, Takuya Miyakawa, Hidehiko Murata, Tomoo Ohno, Arata Okuyama, Ryo Oyama, Yukio Sasaki, Yoshio Shimazu, Kazuki Shimoji, Yasuhiko Sumida, Masuo Suzuki, Hidetaka Taniguchi, Hiroaki Tsuchiyami, Daisaku Uesawa, Hironobu Yokuta, and Ryo Yoshida. 2016. An Introduction to Himawari-8/9; Japan's New-Generation Geostationary Meteorological Satellites. Journal of the Meteorological Society of Japan. Ser. II 94, 2 (2016), 151--183. Google ScholarGoogle ScholarCross RefCross Ref
  5. Peter Bogenschutz and Steven K. Krueger. 2013. A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models. Journal of Advances in Modeling Earth Systems 5, 2 (2013), 195--211. arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/jame.20018 Google ScholarGoogle ScholarCross RefCross Ref
  6. A. M. Bradley, P. A. Bosler, and O. Guba. 2022. Islet: interpolation semi-Lagrangian element-based transport. Geoscientific Model Development 15, 16 (2022), 6285--6310. Google ScholarGoogle ScholarCross RefCross Ref
  7. P. M. Caldwell, C. R. Terai, B. Hillman, N. D. Keen, P. Bogenschutz, W. Lin, H. Beydoun, M. Taylor, L. Bertagna, A. M. Bradley, T. C. Clevenger, A. S. Donahue, C. Eldred, J. Foucar, J.-C. Golaz, O. Guba, R. Jacob, J. Johnson, J. Krishna, W. Liu, K. Pressel, A. G. Salinger, B. Singh, A. Steyer, P. Ullrich, D. Wu, X. Yuan, J. Shpund, H.-Y. Ma, and C. S. Zender. 2021. Convection-Permitting Simulations With the E3SM Global Atmosphere Model. Journal of Advances in Modeling Earth Systems 13, 11 (2021), e2021MS002544. arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2021MS002544 Google ScholarGoogle ScholarCross RefCross Ref
  8. H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos: Enabling manycore performance portability through polymorphic memory access patterns. J. Parallel Distr. Com. 74, 12 (2014), 3202--3216.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. National Energy Research Scientific Computing Center. 2023. PERLMUTTER. Retrieved 2023-04-12 from https://docs.nersc.gov/systems/perlmutterGoogle ScholarGoogle Scholar
  10. A. Costello, M. Abbas, A. Allen, S. Ball, S. Bell, R. Bellamy, S. Friel, N. Groce, A. Johnson, and M. Kett. 2009. Managing the health effects of climate change. Lancet 373 (2009), 1693--1733.Google ScholarGoogle ScholarCross RefCross Ref
  11. Peter D. Dueben, Nils Wedi, Sami Saarinen, and Christian Zeman. 2020. Global Simulations of the Atmosphere at 1.45 km Grid-Spacing with the Integrated Forecasting System. Journal of the Meteorological Society of Japan. Ser. II 98, 3 (2020), 551--572. Google ScholarGoogle ScholarCross RefCross Ref
  12. Oak Ridge Leadership Facility. 2023. FRONTIER. Retrieved 2023-04-12 from https://www.olcf.ornl.gov/olcf-resources/compute-systems/frontierGoogle ScholarGoogle Scholar
  13. Oak Ridge Leadership Facility. 2023. SUMMIT Oak Ridge National Laboratory's 200 petaflop supercomputer. Retrieved 2023-04-12 from https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/Google ScholarGoogle Scholar
  14. G. Flato, J. Marotzke, B. Abiodun, P. Braconnot, S.C. Chou, W. Collins, P. Cox, F. Driouech, S. Emori, V. Eyring, C. Forest, P. Gleckler, E. Guilyardi, C. Jakob, V. Kattsov, C. Reason, and M. Rummukainen. 2013. Evaluation of Climate Models. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Book section 9, 741--866. Google ScholarGoogle ScholarCross RefCross Ref
  15. Haohuan Fu, Junfeng Liao, Nan Ding, Xiaohui Duan, Lin Gan, Yishuang Liang, Xinliang Wang, Jinzhe Yang, Yan Zheng, Weiguo Liu, Lanning Wang, and Guangwen Yang. 2017. Redesigning CAM-SE for Peta-scale Climate Modeling Performance and Ultra-high Resolution on Sunway TaihuLight. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (Denver, Colorado) (SC '17). ACM, New York, NY, USA, Article 1, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. O. Fuhrer, T. Chadha, T. Hoefler, G. Kwasniewski, X. Lapillonne, D. Leutwyler, D. Lüthi, C. Osuna, C. Schär, T. C. Schulthess, and H. Vogt. 2018. Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0. Geosci. Model Dev. 11, 4 (2018), 1665--1681. Google ScholarGoogle ScholarCross RefCross Ref
  17. M. A. Giorgetta, W. Sawyer, X. Lapillonne, P. Adamidis, D. Alexeev, V. Clément, R. Dietlicher, J. F. Engels, M. Esch, H. Franke, C. Frauen, W. M. Hannah, B. R. Hillman, L. Kornblueh, P. Marti, M. R. Norman, R. Pincus, S. Rast, D. Reinert, R. Schnur, U. Schulzweida, and B. Stevens. 2022. The ICON-A model for direct QBO simulations on GPUs (version icon-cscs:baf28a514). Geoscientific Model Development 15, 18 (2022), 6985--7016. Google ScholarGoogle ScholarCross RefCross Ref
  18. William F. Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg Eisenhauer, Junmin Gu, Philip Davis, Jong Choi, Kai Germaschewski, Kevin Huck, Axel Huebl, Mark Kim, James Kress, Tahsin Kurc, Qing Liu, Jeremy Logan, Kshitij Mehta, George Ostrouchov, Manish Parashar, Franz Poeschel, David Pugmire, Eric Suchyta, Keichi Takahashi, Nick Thompson, Seiji Tsutsumi, Lipeng Wan, Matthew Wolf, Kesheng Wu, and Scott Klasky. 2020. ADIOS 2: The Adaptable Input Output System. A framework for high-performance data management. SoftwareX 12 (2020), 100561. Google ScholarGoogle ScholarCross RefCross Ref
  19. Jun Gu, Jiawang Feng, Xiaoyu Hao, Tao Fang, Chun Zhao, Hong An, Junshi Chen, Mingyue Xu, Jian Li, Wenting Han, Chao Yang, Fang Li, and Dexun Chen. 2022. Establishing a non-hydrostatic global atmospheric modeling system at 3-km horizontal resolution with aerosol feedbacks on the Sunway supercomputer of China. Science Bulletin 67, 11 (2022), 1170--1181. Google ScholarGoogle ScholarCross RefCross Ref
  20. O. Guba, M.A. Taylor, and A. St.-Cyr. 2014. Optimization based limiters for the spectral element method. J. Comput. Phys. 267 (2014), 176--195. Google ScholarGoogle ScholarCross RefCross Ref
  21. O. Guba, M.A. Taylor, P. Ullrich, J.R. Overfelt, and M.N. Levy. 2014. The spectral element method on variable resolution grids: Evaluating grid sensitivity and resolution-aware numerical viscosity. Geosci. Model Dev. 7 (2014), 4081--4117. Google ScholarGoogle ScholarCross RefCross Ref
  22. O. Guba, M. A. Taylor, A. M. Bradley, P. A. Bosler, and A. Steyer. 2020. A framework to evaluate IMEX schemes for atmospheric models. Geoscientific Model Development 13, 12 (2020), 6467--6480. Google ScholarGoogle ScholarCross RefCross Ref
  23. Walter M. Hannah, Andrew M. Bradley, Oksana Guba, Qi Tang, Jean-Christophe Golaz, and Jon Wolfe. 2021. Separating Physics and Dynamics Grids for Improved Computational Efficiency in Spectral Element Earth System Models. Journal of Advances in Modeling Earth Systems 13, 7 (2021), e2020MS002419. arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020MS002419 Google ScholarGoogle ScholarCross RefCross Ref
  24. Edward Hartnett and Jim Edwards. 2021. The parallelio (PIO) C/FORTRAN libraries for scalable HPC performance. In 37th Conference on Environmental Information Processing Technologies, American Meteorological Society Annual Meeting. 10--15.Google ScholarGoogle Scholar
  25. C. Kodama, T. Ohno, T. Seiki, H. Yashiro, A. T. Noda, M. Nakano, Y. Yamada, W. Roh, M. Satoh, T. Nitta, D. Goto, H. Miura, T. Nasuno, T. Miyakawa, Y.-W. Chen, and M. Sugi. 2021. The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updates. Geoscientific Model Development 14, 2 (2021), 795--820. Google ScholarGoogle ScholarCross RefCross Ref
  26. L. Ruby Leung, David C. Bader, Mark A. Taylor, and Renata B. McCoy. 2020. An Introduction to the E3SM Special Collection: Goals, Science Drivers, Development, and Analysis. Journal of Advances in Modeling Earth Systems 12, 11 (Nov. 2020). Google ScholarGoogle ScholarCross RefCross Ref
  27. Jianwei Li, Wei keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel, B. Gallagher, and M. Zingale. 2003. Parallel netCDF: A High-Performance Scientific I/O Interface. In SC '03: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing. 39--39. Google ScholarGoogle ScholarCross RefCross Ref
  28. H. Morrison and J. A. Milbrandt. 2015. Parameterization of cloud microphysics based on the prediction of the bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci. 72 (2015), 287--311.Google ScholarGoogle ScholarCross RefCross Ref
  29. Philipp Neumann, Peter Düben, Panagiotis Adamidis, Peter Bauer, Matthias Brueck, Luis Kornblueh, Daniel Klocke, Bjorn Stevens, Nils Wedi, and Joachim Biercamp. 2019. Assessing the scales in numerical weather and climate predictions: Will exascale be the rescue? Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 377 (04 2019). Google ScholarGoogle ScholarCross RefCross Ref
  30. Matthew Norman, Isaac Lyngaas, Abhishek Bagusetty, and Mark Berrill. 2022. Portable C++ Code that can Look and Feel Like Fortran Code with Yet Another Kernel Launcher (YAKL). International Journal of Parallel Programming (2022), 1--22.Google ScholarGoogle Scholar
  31. NASA Earth Observatory. 2005. Blue Marble Next Generation. Retrieved 2023-10-07 from https://earthobservatory.nasa.gov/features/BlueMarbleGoogle ScholarGoogle Scholar
  32. Tim Palmer. 2014. Climate forecasting: Build high-resolution global climate models. Nature News 515, 7527 (2014), 338.Google ScholarGoogle ScholarCross RefCross Ref
  33. Robert Pincus, Eli J. Mlawer, and Jennifer S. Delamere. 2019. Balancing Accuracy, Efficiency, and Flexibility in Radiation Calculations for Dynamical Models. Journal of Advances in Modeling Earth Systems 11, 10 (2019), 3074--3089. arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019MS001621 Google ScholarGoogle ScholarCross RefCross Ref
  34. E3SM Project. 2023. Energy Exascale Earth System Model. Retrieved 2023-10-07 from https://e3sm.org/Google ScholarGoogle Scholar
  35. William M. Putman and Max Suarez. 2011. Cloud-system resolving simulations with the NASA Goddard Earth Observing System global atmospheric model (GEOS-5). Geophysical Research Letters 38, 16 (2011). Google ScholarGoogle ScholarCross RefCross Ref
  36. David Randall, Marat Khairoutdinov, Akio Arakawa, and Wojciech Grabowski. 2003. Breaking the Cloud Parameterization Deadlock. Bulletin of the American Meteorological Society 84, 11 (2003), 1547 -- 1564. Google ScholarGoogle ScholarCross RefCross Ref
  37. J. Rosinksi. 2017. GPTL - General Purpose Timing Library. https://jmrosinski.github.io/GPTLGoogle ScholarGoogle Scholar
  38. B.M. Sanderson, C. Piani, W.J. Ingram, D.A. Stone, and M. R. Allen. 2008. Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Clim Dyn 30 (2008), 175--190.Google ScholarGoogle ScholarCross RefCross Ref
  39. Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama, Tetsuya Odajima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki, Naoyuki Shida, Ikuo Miyoshi, Kouichi Hirai, Atsushi Furuya, Akira Asato, Kuniki Morita, and Toshiyuki Shimizu. 2020. Co-Design for A64FX Manycore Processor and "Fugaku". In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. 1--15. Google ScholarGoogle ScholarCross RefCross Ref
  40. M. Satoh, T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga. 2008. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys. 227, 7 (2008), 3486--3514. Predicting weather, climate and extreme events. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Masaki Satoh, Bjorn Stevens, Falko Judt, Marat Khairoutdinov, Shian-Jiann Lin, William M. Putman, and Peter Düben. 2019. Global Cloud-Resolving Models. Current Climate Change Reports 5, 3 (May 2019), 172--184. Google ScholarGoogle ScholarCross RefCross Ref
  42. Masaki Satoh, Hirofumi Tomita, Hisashi Yashiro, Hiroaki Miura, Chihiro Kodama, Tatsuya Seiki, Akira Noda, Yohei Yamada, Daisuke Goto, Masahiro Sawada, Takemasa Miyoshi, Yosuke Niwa, Masayuki Hara, Tomoki Ohno, Shin-ichi Iga, Takashi Arakawa, Takahiro Inoue, and Hiroyasu Kubokawa. 2014. The Non-hydrostatic Icosahedral Atmospheric Model: description and development. Progress in Earth and Planetary Science 1 (2014), 18. Google ScholarGoogle ScholarCross RefCross Ref
  43. T. Schneider, J. Teixeira, C. Bretherton, F. Brient, K. G. Pressel, C Shar, and A. P. Siebesma. 2017. Climate goals and computing the future of clouds. Nature Clim Change 7 (2017), 3--5.Google ScholarGoogle ScholarCross RefCross Ref
  44. Steven C Sherwood, Sandrine Bony, and Jean-Louis Dufresne. 2014. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505, 7481 (2014), 37--42.Google ScholarGoogle Scholar
  45. W. C. Skamarock, J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. Ringler. 2012. A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev. 140 (2012), 3090--3105.Google ScholarGoogle ScholarCross RefCross Ref
  46. Julia Slingo, Paul Bates, Peter Bauer, Stephen Belcher, Tim Palmer, Graeme Stephens, Bjorn Stevens, Thomas Stocker, and Georg Teutsch. 2022. Ambitious partnership needed for reliable climate prediction. Nature Climate Change 12 (06 2022), 499--503. Google ScholarGoogle ScholarCross RefCross Ref
  47. Sarat Sreepathi and Mark Taylor. 2021. Early Evaluation of Fugaku A64FX Architecture Using Climate Workloads. In 2021 IEEE International Conference on Cluster Computing (CLUSTER). 719--727. Google ScholarGoogle ScholarCross RefCross Ref
  48. Daniel Steel, C. Tyler DesRoches, and Kian Mintz-Woo. 2022. Climate change and the threat to civilization. Proceedings of the National Academy of Sciences 119, 42 (2022), e2210525119. arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.2210525119 Google ScholarGoogle ScholarCross RefCross Ref
  49. Bjorn Stevens and Sandrine Bony. 2013. What are climate models missing? Science 340, 6136 (2013), 1053--1054.Google ScholarGoogle Scholar
  50. Bjorn Stevens, Masaki Satoh, Ludovic Auger, Joachim Biercamp, Christopher S. Bretherton, Xi Chen, Peter Düben, Falko Judt, Marat Khairoutdinov, Daniel Klocke, Chihiro Kodama, Luis Kornblueh, Shian-Jiann Lin, Philipp Neumann, William M. Putman, Niklas Röber, Ryosuke Shibuya, Benoit Vanniere, Pier Luigi Vidale, Nils Wedi, and Linjiong Zhou. 2019. DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains. Progress in Earth and Planetary Science 6, 1 (Sept. 2019). Google ScholarGoogle ScholarCross RefCross Ref
  51. Q. Tang, J.-C. Golaz, L. P. Van Roekel, M. A. Taylor, W. Lin, B. R. Hillman, P. A. Ullrich, A. M. Bradley, O. Guba, J. D. Wolfe, T. Zhou, K. Zhang, X. Zheng, Y. Zhang, M. Zhang, M. Wu, H. Wang, C. Tao, B. Singh, A. M. Rhoades, Y. Qin, H.-Y. Li, Y. Feng, Y. Zhang, C. Zhang, C. S. Zender, S. Xie, E. L. Roesler, A. F. Roberts, A. Mametjanov, M. E. Maltrud, N. D. Keen, R. L. Jacob, C. Jablonowski, O. K. Hughes, R. M. Forsyth, A. V. Di Vittorio, P. M. Caldwell, G. Bisht, R. B. McCoy, L. R. Leung, and D. C. Bader. 2022. The Fully Coupled Regionally Refined Model of E3SM Version 2: Overview of the Atmosphere, Land, and River. Geoscientific Model Development Discussions 2022 (2022), 1--64. Google ScholarGoogle ScholarCross RefCross Ref
  52. Q. Tang, S. A. Klein, S. Xie, W. Lin, J.-C. Golaz, E. L. Roesler, M. A. Taylor, P. J. Rasch, D. C. Bader, L. K. Berg, P. Caldwell, S. E. Giangrande, R. B. Neale, Y. Qian, L. D. Riihimaki, C. S. Zender, Y. Zhang, and X. Zheng. 2019. Regionally refined test bed in E3SM atmosphere model version 1 (EAMv1) and applications for highresolution modeling. Geoscientific Model Development 12, 7 (2019), 2679--2706. Google ScholarGoogle ScholarCross RefCross Ref
  53. M. A. Taylor and A. Fournier. 2010. A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys. 229 (2010), 5879-- 5895. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Mark A. Taylor, Oksana Guba, Andrew Steyer, Paul A. Ullrich, David M. Hall, and Christopher Eldrid. 2020. An Energy Consistent Discretization of the Nonhydrostatic Equations in Primitive Variables. J. Adv. Model Earth Sy. 12, 1 (2020). Google ScholarGoogle ScholarCross RefCross Ref
  55. Koji Terasaki and Takemasa Miyoshi. 2022. A 1024-Member NICAM-LETKF Experiment for the July 2020 Heavy Rainfall Event. SOLA 18A, Special_Edition (2022), 8--14. Google ScholarGoogle ScholarCross RefCross Ref
  56. The HDF Group. 2000--2023. Hierarchical Data Format version 5 (HDF5). http://www.hdfgroup.org/HDF5Google ScholarGoogle Scholar
  57. H Tomita, H Miura, S Iga, T Nasuno, and M Satoh. 2005. A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophysical Research Letters 32, 8 (2005).Google ScholarGoogle ScholarCross RefCross Ref
  58. TOP500.org. 2022. TOP500 supercomputer sites. Retrieved 2022-12-01 from https://top500.orgGoogle ScholarGoogle Scholar
  59. Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang, Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell, Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin, and Jeremiah Wilke. 2022. Kokkos 3: Programming Model Extensions for the Exascale Era. IEEE Transactions on Parallel and Distributed Systems 33, 4 (2022), 805--817. Google ScholarGoogle ScholarCross RefCross Ref
  60. Unidata. 2021. Network Common Data Form (NetCDF). Google ScholarGoogle ScholarCross RefCross Ref
  61. Nils P. Wedi, Inna Polichtchouk, Peter Dueben, Valentine G. Anantharaj, Peter Bauer, Souhail Boussetta, Philip Browne, Willem Deconinck, Wayne Gaudin, Ioan Hadade, Sam Hatfield, Olivier Iffrig, Philippe Lopez, Pedro Maciel, Andreas Mueller, Sami Saarinen, Irina Sandu, Tiago Quintino, and Frederic Vitart. 2020. A Baseline for Global Weather and Climate Simulations at 1 km Resolution. Journal of Advances in Modeling Earth Systems 12, 11 (2020), e2020MS002192. arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020MS002192e2020MS00219210.1029/2020MS002192. Google ScholarGoogle ScholarCross RefCross Ref
  62. C. Yang, W. Xue, H. Fu, H. You, X. Wang, Y. Ao, F. Liu, L. Gan, P. Xu, L. Wang, G. Yang, and W. Zheng. 2016. 10M-Core Scalable Fully-Implicit Solver for Nonhydrostatic Atmospheric Dynamics. In SC '16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 57--68. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. The Simple Cloud-Resolving E3SM Atmosphere Model Running on the Frontier Exascale System

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SC '23: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
      November 2023
      1428 pages
      ISBN:9798400701092
      DOI:10.1145/3581784

      Copyright © 2023 Owner/Author(s)

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 November 2023

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,516of6,373submissions,24%
    • Article Metrics

      • Downloads (Last 12 months)823
      • Downloads (Last 6 weeks)133

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader