
MC/DC for Space

A new Approach to Ensure MC/DC Structural Coverage with Exclusively
Open Source Tools

Thomas Wucher, Andoni Arregui

2021-10-07
ESA Software Product Assurance Workshop 2021

GTD GmbH

Table of Contents

1. Motivation

2. Necessary Concepts

3. Our Method and Tool

4. Conclusion

MC/DC for Space 1

Motivation

Motivation

How many tests do we need for the
following code?

• 1 statement
• How many branches?
• How many decisions?
• 1, 2, 3, 4 tests?

include < s t d boo l . h>

bool t e s t (bool a , bool b , bool c)
{

return b && c | | a ;
}

MC/DC for Space 2

Current Approach to MC/DC

• MC/DC is a popular structural coverage metric required by many standards, e.g., DO-178.
• It is a demanding metric as it requires many more tests than branch/decision coverage.
• Its assessment is usually done with proprietary tools and late in the project.

MC/DC as an ECSS Requirement
• Definition in E-ST-40 §3.2.18
• MC/DC is one of the structural coverage requirements of ECSS E-ST-40 (§5.8.3.5.b),

Q-ST-80 (§6.3.5.2), and Q-HB-80-04 (Table 5-3):
• the coverage percentage must be agreed for all categories except CAT A

→Often the agreement means 0% for Cat B and lower

• the assessment is to be done on the source code
• the coverage must be achieved by unit, integration, and validation testing

MC/DC for Space 3

MC/DC in ECSS

E-ST-40 §5.8.3.5.b
Q-HB-80-04 Table 5-3

MC/DC for Space 4

Is MC/DC useful to detect software errors?

Figure 1: Minimum probability of logic error detection vs. number of conditions1

1J.J. Chilenski. “An Investigation of Three Forms of the Modified Condition Decision Coverage (MCDC) Criterion”, 2001.

MC/DC for Space 5

What’s the Problem

• It is deemed that the testing effort is expensive, as it requires many more tests than
simple decision coverage.

• The qualified proprietary tools used for the assessment are expensive and using them
requires further effort.

• The tools cannot be freely redistributed within delta-qualification kits (e.g., MLFS,
RTEMS SMP)

This leads to
• Trying to avoid MC/DC altogether within a project

→Agree on 0% MC/DC

• Imposing unnatural coding rules
→only 1 condition per decision

• Lower the MC/DC goal to make it meaningless
→achieve 80% MC/DC

MC/DC for Space 6

Our Goal

We propose
To produce a method and a tool that:

• Helps developers to assess the achieved MC/DC coverage
• Allows normal source code writing without impractical coding rule restrictions.
• Allows an open source based approach to ensure the free distribution of the complete unit

and validation testing workflow for delta-qualification tool-kits.

MC/DC for Space 7

Advantages of an Open Source Approach

An open source based system allows us to:

• Deploy a Continuous Integration system without long-term licensing costs capable of:
• building the software
• unit-testing the software
• validation testing the software
• assessing product assurance metrics including MC/DC

• Distribute the complete Continuous Integration system together with the test-suite for
project specific delta qualification.

• Projects can benefit from this approach as commonly available open source tools will suffice
for MC/DC assessment.

MC/DC for Space 8

Necessary Concepts

Structural Coverage

For structural coverage we need:
• 1 test for statement coverage
• 2 tests for decision coverage
• 4 tests for MC/DC
• We need to show that every condition in

the decision correctly contributes to the
result.

include < s t d boo l . h>

bool t e s t (bool a , bool b , bool c)
{

return b && c | | a ;
}

MC/DC for Space 9

Which Kind of MC/DC

There are several kind of MC/DC, depending on the definition:

• Unique cause MC/DC
• Unique cause + Masking MC/DC
• Masking MC/DC

Our MC/DC
We will deal here with masking MC/DC, as it is the most practical one, is the one currently
used by DO-178C, and matches well with short-circuiting in the C language.

MC/DC for Space 10

MC/DC for our Example

Truth table
𝑓 (𝑎, 𝑏, 𝑐) = 𝑏 ∧ 𝑐 ∨ 𝑎:

case b c a result
1 0 0 0 FALSE
2 0 0 1 TRUE
3 0 1 0 FALSE
4 0 1 1 TRUE
5 1 0 0 FALSE
6 1 0 1 TRUE
7 1 1 0 TRUE
8 1 1 1 TRUE

include < s t d boo l . h>

bool t e s t (bool a , bool b , bool c)
{

return b && c | | a ;
}

MC/DC for Space 11

MC/DC for our Example

Truth table with masking
𝑓 (𝑎, 𝑏, 𝑐) = 𝑏 && 𝑐 || 𝑎:

case b c a result
1 0 ? 0 FALSE
2 0 ? 1 TRUE
3 0 ? 0 FALSE
4 0 ? 1 TRUE
5 1 0 0 FALSE
6 1 0 1 TRUE
7 1 1 ? TRUE
8 1 1 ? TRUE

include < s t d boo l . h>

bool t e s t (bool a , bool b , bool c)
{

return b && c | | a ;
}

MC/DC for Space 12

MC/DC for our Example

Truth table with masking
𝑓 (𝑎, 𝑏, 𝑐) = 𝑏 && 𝑐 || 𝑎:

case b c a result
1 0 ? 0 FALSE
2 0 ? 1 TRUE
3 0 ? 0 FALSE
4 0 ? 1 TRUE
5 1 0 0 FALSE
6 1 0 1 TRUE
7 1 1 ? TRUE
8 1 1 ? TRUE

Test pairs:
• to test b with independence: {1, 7}
• to test c with independence: {5, 7}
• to test a with independence: {5, 6}

Thus, we can take cases: {1, 5, 6, 7} to achieve
full MC/DC

MC/DC for Space 13

Assessing Structural Coverage with gcov

The free tool gcov shows us:
• Full statement and branch

coverage with cases: {1, 6, 7}
• 3 test cases are enough:

• 1 more than decision coverage
• 1 less than MC/DC

• The 6 covered branches are called
OBC: Object Branch Coverage

gcov by itself is not enough
gcov alone does not show if full MC/DC is achieved even if it requires more than just decision
coverage.

MC/DC for Space 14

Assembler vs. AST vs. BDD

F2

b

a

0 1

c

1

MC/DC for Space 15

Our Method and Tool

From OBC to MC/DC

For our example function 𝑓 (𝑎, 𝑏, 𝑐) = 𝑏 && 𝑐 || 𝑎:
• The compiler generates a BDD (Binary Decision Diagram) in

object code when invoked without optimization (-O0)
• The BDD has 6 edges

as the OBC branches count in gcov

• The BDD has 3 paths/endpoints
as the tests needed to cover 100% in gcov

F2

b

a

0 1

c

1

MC/DC for Space 16

From OBC to MC/DC

If we transform our example function to 𝑓 (𝑎, 𝑏, 𝑐) = 𝑎 || 𝑏 && 𝑐:
• The BDD has 6 edges

as the OBC branches count in gcov

• The BDD has 4 paths/endpoints
as the tests needed to achieve MC/DC

F2

a

1b

0 c

0 1

Treelike BDDs show MC/DC

For treelike BDDs it is proven2 that OBC implies MC/DC and gcov is able to show this.

2Comar, Guitton, Hainque, and Quinot. “Formalization and Comparison of MCDC and Object Branch Coverage
Criteria,” 2011.

MC/DC for Space 17

Assessing Structural Coverage with gcov

The free tool gcov shows us:
• Full statement but incomplete

object branch coverage with
cases: {1, 6, 7}

• 3 test cases are not enough:
• 2 more than decision coverage

are required now
• This is proven to be equivalent

to MC/DC

• One test case ({5} true, false,
false) is missing to achieve 100%
MC/DC

MC/DC for Space 18

Our Tool

Features of our tool:
• Enables us to assess all decisions in C
• Detects decisions with non-treelike BDDs
• Proposes reordering to achieve a treelike BDD
• Enables the MC/DC assessment with gcov

• Python and clang based
• Makes use of the clang AST (Abstract Syntax Tree)

$ python3 mcdc_checker.py tests/example.c
Processing file tests/example.c
None tree-like decision at:

tests/example.c line 4, column 12
Found solution: [’a’, ’b’, ’c’]

Using the found solution, we can reorder
the condition to a || b && c

MC/DC for Space 19

Our Tool

• We have run our tool on several code bases finding few non-treelike BDDs:
• On RTEMS SMP
• On the Mathematical Library for Critical Systems

• This indicates that for many source code pieces gcov is already showing MC/DC.
• The source code changes required to enable gcov to show MC/DC are minimal.
• Other evaluations on industrial code show non-tree like BDDs to be less than 1% of all

decisions.

MC/DC for Space 20

Conclusion

Conclusions on the Method and the Tool

Advantages
• The method has been mathematically proven.
• Our tool enables MC/DC assessment with the open source tool gcov.
• The required source code changes have very little impact and ensure a good maintainability.
• The structural coverage analysis including MC/DC can be done on target.
• The tool can be freely and easily integrated into existing CI/CD pipelines.

Cautions
• The tool may in some cases not find a solution

→then manual assessment is still needed.

• The gcov assessment is done on a compilation without optimization (i.e., -O0).
• The gcov assessment requires code instrumentation.
• The tool is not yet qualified.

MC/DC for Space 21

Thanks

These ideas, methods, and tools heavily base on the work of others.

In particular we want to thank Andreas Jung (ESA ESTEC) for stimulating us to find an open
source solution for this problem and to Thanassis Tsiodras (ESA ESTEC) whose initial works on
using gcov for this purpose and discussions led us to these results.

MC/DC for Space 22

	Motivation
	Necessary Concepts
	Our Method and Tool
	Conclusion

